# %% # %% import gradio as gr import pandas as pd import yfinance as yf from datetime import datetime import plotly.graph_objects as go import numpy as np # Functions for calculating indicators (SMA, RSI, etc.) and generating trading signals def calculate_sma(df, window): return df['Close'].rolling(window=window).mean() def calculate_ema(df, window): return df['Close'].ewm(span=window, adjust=False).mean() def calculate_macd(df): short_ema = df['Close'].ewm(span=12, adjust=False).mean() long_ema = df['Close'].ewm(span=26, adjust=False).mean() macd = short_ema - long_ema signal = macd.ewm(span=9, adjust=False).mean() return macd, signal def calculate_rsi(df): delta = df['Close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi def calculate_bollinger_bands(df): middle_bb = df['Close'].rolling(window=20).mean() upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std() lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std() return middle_bb, upper_bb, lower_bb def calculate_stochastic_oscillator(df): lowest_low = df['Low'].rolling(window=14).min() highest_high = df['High'].rolling(window=14).max() slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100 slowd = slowk.rolling(window=3).mean() return slowk, slowd def calculate_cmf(df, window=20): mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume'] cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum() return cmf def calculate_cci(df, window=20): """Calculate Commodity Channel Index (CCI).""" typical_price = (df['High'] + df['Low'] + df['Close']) / 3 sma = typical_price.rolling(window=window).mean() mean_deviation = (typical_price - sma).abs().rolling(window=window).mean() cci = (typical_price - sma) / (0.015 * mean_deviation) return cci def generate_trading_signals(df): # Calculate various indicators df['SMA_30'] = calculate_sma(df, 30) df['SMA_100'] = calculate_sma(df, 100) df['EMA_12'] = calculate_ema(df, 12) df['EMA_26'] = calculate_ema(df, 26) df['RSI'] = calculate_rsi(df) df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df) df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df) df['CMF'] = calculate_cmf(df) df['CCI'] = calculate_cci(df) # Generate trading signals df['SMA_Signal'] = np.where(df['SMA_30'] > df['SMA_100'], 1, 0) macd, signal = calculate_macd(df) df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)), (macd < signal) & (macd.shift(1) >= signal.shift(1))],[1, -1], default=0) df['RSI_Signal'] = np.where(df['RSI'] < 20, 1, 0) df['RSI_Signal'] = np.where(df['RSI'] > 90, -1, df['RSI_Signal']) df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'], 0, 0) df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'], -1, df['BB_Signal']) df['Stochastic_Signal'] = np.where((df['SlowK'] < 10) & (df['SlowD'] < 15), 1, 0) df['Stochastic_Signal'] = np.where((df['SlowK'] > 90) & (df['SlowD'] > 85), -1, df['Stochastic_Signal']) df['CMF_Signal'] = np.where(df['CMF'] > 0.3, -1, np.where(df['CMF'] < -0.3, 1, 0)) df['CCI_Signal'] = np.where(df['CCI'] < -180, 1, 0) df['CCI_Signal'] = np.where(df['CCI'] > 150, -1, df['CCI_Signal']) # Combined signal for stronger buy/sell points df['Combined_Signal'] = df[['RSI_Signal', 'BB_Signal', 'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal']].sum(axis=1) return df # %% def plot_combined_signals(df, ticker): # Create a figure fig = go.Figure() # Add closing price trace fig.add_trace(go.Scatter( x=df.index, y=df['Close'], mode='lines', name='Closing Price', line=dict(color='lightcoral', width=2) )) # Add buy signals buy_signals = df[df['Combined_Signal'] >= 3] fig.add_trace(go.Scatter( x=buy_signals.index, y=buy_signals['Close'], mode='markers', marker=dict(symbol='triangle-up', size=10, color='lightgreen'), name='Buy Signal' )) # Add sell signals sell_signals = df[df['Combined_Signal'] <= -3] fig.add_trace(go.Scatter( x=sell_signals.index, y=sell_signals['Close'], mode='markers', marker=dict(symbol='triangle-down', size=10, color='lightsalmon'), name='Sell Signal' )) # Combined signal trace fig.add_trace(go.Scatter( x=df.index, y=df['Combined_Signal'], mode='lines', name='Combined Signal', line=dict(color='deepskyblue', width=2), yaxis='y2' )) # Update layout fig.update_layout( title=f'{ticker}: 360 Stock Price and Combined Trading Signal', xaxis=dict(title='Date'), yaxis=dict(title='Price', side='left'), yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False), plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white') ) return fig # %% def stock_analysis(ticker, start_date, end_date): # Download stock data from Yahoo Finance df = yf.download(ticker, start=start_date, end=end_date) # Generate signals generate_trading_signals(df) # Last 60 days df_last_60 = df.tail(120) # Plot signals fig_signals = plot_combined_signals(df_last_60, ticker) return fig_signals # %% def plot_individual_signals(df, ticker): # Create a figure fig = go.Figure() fig.add_trace(go.Scatter( x=df.index, y=df['Close'], mode='lines', name='Closing Price', line=dict(color='lightcoral', width=2) )) # Add buy/sell signals for each indicator signal_names = ['RSI_Signal', 'BB_Signal', 'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal'] for signal in signal_names: buy_signals = df[df[signal] == 1] sell_signals = df[df[signal] == -1] fig.add_trace(go.Scatter( x=buy_signals.index, y=buy_signals['Close'], mode='markers', marker=dict(symbol='triangle-up', size=10, color='lightgreen'), name=f'{signal} Buy Signal' )) fig.add_trace(go.Scatter( x=sell_signals.index, y=sell_signals['Close'], mode='markers', marker=dict(symbol='triangle-down', size=10, color='lightsalmon'), name=f'{signal} Sell Signal' )) fig.update_layout( title=f'{ticker}: Individual Trading Signals', xaxis=dict(title='Date'), yaxis=dict(title='Price', side='left'), plot_bgcolor='black', paper_bgcolor='black', font=dict(color='white') ) return fig def display_signals(df): # Create a signals DataFrame signals_df = df[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal', 'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal']].copy() # The Date is the index, so we don't need to add it as a column signals_df.index.name = 'Date' # Name the index for better readability # Replace signal values with 'Buy', 'Sell', or 'Hold' for column in signals_df.columns: signals_df[column] = signals_df[column].replace( {1: 'Buy', -1: 'Sell', 0: 'Hold'} ) return signals_df def stock_analysis(ticker, start_date, end_date): # Download stock data from Yahoo Finance df = yf.download(ticker, start=start_date, end=end_date) # Generate signals df = generate_trading_signals(df) # Last 60 days for plotting df_last_60 = df.tail(360) # Plot combined signals fig_signals = plot_combined_signals(df_last_60, ticker) # Plot individual signals fig_individual_signals = plot_individual_signals(df_last_60, ticker) # Display signals DataFrame signals_df = df_last_60[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal', 'Stochastic_Signal','CMF_Signal', 'CCI_Signal']] return fig_signals, fig_individual_signals # %% # Define Gradio interface with gr.Blocks() as demo: gr.Markdown("## 360 Stock Market Analysis") ticker_input = gr.Textbox(label="Enter Stock Ticker (e.g., AAPL, NVDA)", value="NVDA") start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2022-01-01") end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2026-01-01") # Create a submit button that runs the stock analysis function button = gr.Button("Analyze Stock") # Outputs: Display results, charts combined_signals_output = gr.Plot(label="Combined Trading Signals") individual_signals_output = gr.Plot(label="Individual Trading Signals") #signals_df_output = gr.Dataframe(label="Buy/Sell Signals") # Link button to function button.click(stock_analysis, inputs=[ticker_input, start_date_input, end_date_input], outputs=[combined_signals_output, individual_signals_output]) # Launch the interface demo.launch()