Jayem-11 commited on
Commit
286c232
·
1 Parent(s): 25bbfa0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py CHANGED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ from PIL import Image
4
+ import numpy as np
5
+ from patchify import patchify
6
+ from sklearn.preprocessing import MinMaxScaler, StandardScaler
7
+
8
+ from matplotlib import pyplot as plt
9
+ import random
10
+
11
+ from keras.utils import to_categorical
12
+ from keras import backend as K
13
+ import gradio as gr
14
+
15
+ def jaccard_coef(y_true, y_pred):
16
+ y_true_flatten = K.flatten(y_true)
17
+ y_pred_flatten = K.flatten(y_pred)
18
+
19
+ intersection = K.sum(y_true_flatten*y_pred_flatten) + 1.0
20
+ union = K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0
21
+ iou = intersection / union
22
+
23
+ return iou
24
+
25
+ weights = [0.166,0.166,0.166,0.166,0.166,0.166]
26
+
27
+ import segmentation_models as sm
28
+
29
+ dice_loss = sm.losses.DiceLoss(class_weights = weights)
30
+
31
+
32
+ focal_loss = sm.losses.CategoricalFocalLoss()
33
+
34
+ total_loss = dice_loss + (1 * focal_loss)
35
+
36
+
37
+ from keras.models import load_model
38
+
39
+
40
+ saved_model = load_model('model/satellite_segmentation_full.h5',
41
+ custom_objects=({'dice_loss_plus_1focal_loss': total_loss,
42
+ 'jaccard_coef': jaccard_coef}))
43
+
44
+
45
+ def process_input_image(image_source):
46
+ image = np.expand_dims(image_source, 0)
47
+
48
+ prediction = saved_model.predict(image)
49
+ predicted_image = np.argmax(prediction, axis=3)
50
+
51
+ predicted_image = predicted_image[0,:,:]
52
+ predicted_image = predicted_image * 50
53
+ return 'Predicted Masked Image', predicted_image
54
+
55
+
56
+
57
+ my_app = gr.Blocks()
58
+
59
+
60
+ with my_app:
61
+ gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
62
+ with gr.Tabs():
63
+ with gr.TabItem("Select your image"):
64
+ with gr.Row():
65
+ with gr.Column():
66
+ img_source = gr.Image(label="Please select source Image", shape=(256, 256))
67
+ source_image_loader = gr.Button("Load above Image")
68
+ with gr.Column():
69
+ output_label = gr.Label(label="Image Info")
70
+ img_output = gr.Image(label="Image Output")
71
+ source_image_loader.click(
72
+ process_input_image,
73
+ [
74
+ img_source
75
+ ],
76
+ [
77
+ output_label,
78
+ img_output
79
+ ]
80
+ )
81
+
82
+
83
+ my_app.launch(debug=True)
84
+
85
+
86
+
87
+
88
+
89
+
90
+