Spaces:
Running
Running
Upload 11 files
Browse files- app.py +94 -4
- requirements.txt +3 -1
app.py
CHANGED
@@ -2,12 +2,18 @@ from dotenv import load_dotenv
|
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
import google.generativeai as genai
|
|
|
|
|
5 |
from ads_formulas import ads_formulas # Import the ads formulas
|
6 |
from style import styles
|
7 |
from prompts import create_fb_ad_instruction
|
8 |
from emotional_angles import emotional_angles
|
9 |
from copywriter_personas import copywriter_personas
|
10 |
from ad_objectives import ad_objectives # Import ad objectives
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Cargar las variables de entorno
|
13 |
load_dotenv()
|
@@ -24,7 +30,7 @@ def get_model(temperature):
|
|
24 |
return genai.GenerativeModel('gemini-2.0-flash', generation_config=generation_config)
|
25 |
|
26 |
# Function to generate Facebook ads
|
27 |
-
def generate_fb_ad(target_audience, product, temperature, selected_formula, selected_angle, selected_persona, story_prompt="", ad_objective=None):
|
28 |
if not target_audience or not product:
|
29 |
return "Por favor, completa todos los campos requeridos."
|
30 |
|
@@ -35,6 +41,8 @@ def generate_fb_ad(target_audience, product, temperature, selected_formula, sele
|
|
35 |
emphasized_story_prompt = story_prompt.strip()
|
36 |
|
37 |
model = get_model(temperature)
|
|
|
|
|
38 |
ad_instruction = create_fb_ad_instruction(
|
39 |
target_audience,
|
40 |
product,
|
@@ -46,13 +54,22 @@ def generate_fb_ad(target_audience, product, temperature, selected_formula, sele
|
|
46 |
story_prompt=emphasized_story_prompt # Usar el tema enfatizado
|
47 |
)
|
48 |
|
|
|
|
|
|
|
|
|
49 |
# Si hay un tema específico, ajustar la temperatura para mayor coherencia
|
50 |
effective_temperature = temperature
|
51 |
if story_prompt and story_prompt.strip():
|
52 |
# Reducir ligeramente la temperatura para mantener más enfoque en el tema
|
53 |
effective_temperature = max(0.1, temperature * 0.9)
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
return response.parts[0].text if response and response.parts else "Error generating content."
|
57 |
|
58 |
# Configurar la interfaz de usuario con Streamlit
|
@@ -84,7 +101,78 @@ with col1:
|
|
84 |
ad_product = st.text_input("¿Qué producto tienes en mente?", placeholder="Ejemplo: Curso de gestión del tiempo")
|
85 |
input_prompt = st.text_area("Escribe de qué quieres que trate la historia:", placeholder="Escribe aquí tu idea...")
|
86 |
|
87 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
submit_ad = st.button("GENERAR ANUNCIO")
|
89 |
|
90 |
with st.expander("Opciones avanzadas"):
|
@@ -147,7 +235,9 @@ if submit_ad:
|
|
147 |
emotional_angle,
|
148 |
ad_persona,
|
149 |
input_prompt, # Pass the new story prompt
|
150 |
-
selected_objective
|
|
|
|
|
151 |
)
|
152 |
|
153 |
if not isinstance(generated_ad, str):
|
|
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
import google.generativeai as genai
|
5 |
+
import time
|
6 |
+
import datetime
|
7 |
from ads_formulas import ads_formulas # Import the ads formulas
|
8 |
from style import styles
|
9 |
from prompts import create_fb_ad_instruction
|
10 |
from emotional_angles import emotional_angles
|
11 |
from copywriter_personas import copywriter_personas
|
12 |
from ad_objectives import ad_objectives # Import ad objectives
|
13 |
+
import PyPDF2
|
14 |
+
import docx
|
15 |
+
from PIL import Image
|
16 |
+
import io
|
17 |
|
18 |
# Cargar las variables de entorno
|
19 |
load_dotenv()
|
|
|
30 |
return genai.GenerativeModel('gemini-2.0-flash', generation_config=generation_config)
|
31 |
|
32 |
# Function to generate Facebook ads
|
33 |
+
def generate_fb_ad(target_audience, product, temperature, selected_formula, selected_angle, selected_persona, story_prompt="", ad_objective=None, file_content="", image_parts=None):
|
34 |
if not target_audience or not product:
|
35 |
return "Por favor, completa todos los campos requeridos."
|
36 |
|
|
|
41 |
emphasized_story_prompt = story_prompt.strip()
|
42 |
|
43 |
model = get_model(temperature)
|
44 |
+
|
45 |
+
# Crear la instrucción base
|
46 |
ad_instruction = create_fb_ad_instruction(
|
47 |
target_audience,
|
48 |
product,
|
|
|
54 |
story_prompt=emphasized_story_prompt # Usar el tema enfatizado
|
55 |
)
|
56 |
|
57 |
+
# Si hay contenido de archivo, añadirlo a la instrucción
|
58 |
+
if file_content:
|
59 |
+
ad_instruction += f"\n\nAdemás, utiliza la siguiente información como referencia para crear el anuncio:\n\n{file_content[:2000]}"
|
60 |
+
|
61 |
# Si hay un tema específico, ajustar la temperatura para mayor coherencia
|
62 |
effective_temperature = temperature
|
63 |
if story_prompt and story_prompt.strip():
|
64 |
# Reducir ligeramente la temperatura para mantener más enfoque en el tema
|
65 |
effective_temperature = max(0.1, temperature * 0.9)
|
66 |
|
67 |
+
# Generar el contenido con o sin imagen
|
68 |
+
if image_parts:
|
69 |
+
response = model.generate_content([ad_instruction, image_parts], generation_config={"temperature": effective_temperature})
|
70 |
+
else:
|
71 |
+
response = model.generate_content([ad_instruction], generation_config={"temperature": effective_temperature})
|
72 |
+
|
73 |
return response.parts[0].text if response and response.parts else "Error generating content."
|
74 |
|
75 |
# Configurar la interfaz de usuario con Streamlit
|
|
|
101 |
ad_product = st.text_input("¿Qué producto tienes en mente?", placeholder="Ejemplo: Curso de gestión del tiempo")
|
102 |
input_prompt = st.text_area("Escribe de qué quieres que trate la historia:", placeholder="Escribe aquí tu idea...")
|
103 |
|
104 |
+
# Añadir cargador de archivos
|
105 |
+
uploaded_file = st.file_uploader("📄 Sube un archivo o imagen de referencia",
|
106 |
+
type=['txt', 'pdf', 'docx', 'jpg', 'jpeg', 'png'])
|
107 |
+
|
108 |
+
file_content = ""
|
109 |
+
is_image = False
|
110 |
+
image_parts = None
|
111 |
+
|
112 |
+
if uploaded_file is not None:
|
113 |
+
file_type = uploaded_file.name.split('.')[-1].lower()
|
114 |
+
|
115 |
+
# Manejar archivos de texto
|
116 |
+
if file_type in ['txt', 'pdf', 'docx']:
|
117 |
+
if file_type == 'txt':
|
118 |
+
try:
|
119 |
+
file_content = uploaded_file.read().decode('utf-8')
|
120 |
+
st.success(f"Archivo TXT cargado: {uploaded_file.name}")
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Error al leer el archivo TXT: {str(e)}")
|
123 |
+
file_content = ""
|
124 |
+
|
125 |
+
elif file_type == 'pdf':
|
126 |
+
try:
|
127 |
+
import PyPDF2
|
128 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
129 |
+
file_content = ""
|
130 |
+
for page in pdf_reader.pages:
|
131 |
+
file_content += page.extract_text() + "\n"
|
132 |
+
st.success(f"Archivo PDF cargado: {uploaded_file.name}")
|
133 |
+
except Exception as e:
|
134 |
+
st.error(f"Error al leer el archivo PDF: {str(e)}")
|
135 |
+
file_content = ""
|
136 |
+
|
137 |
+
elif file_type == 'docx':
|
138 |
+
try:
|
139 |
+
import docx
|
140 |
+
doc = docx.Document(uploaded_file)
|
141 |
+
file_content = "\n".join([para.text for para in doc.paragraphs])
|
142 |
+
st.success(f"Archivo DOCX cargado: {uploaded_file.name}")
|
143 |
+
except Exception as e:
|
144 |
+
st.error(f"Error al leer el archivo DOCX: {str(e)}")
|
145 |
+
file_content = ""
|
146 |
+
|
147 |
+
# Mostrar una vista previa del contenido
|
148 |
+
if file_content:
|
149 |
+
with st.expander("Vista previa del contenido"):
|
150 |
+
st.text(file_content[:500] + "..." if len(file_content) > 500 else file_content)
|
151 |
+
|
152 |
+
# Manejar archivos de imagen
|
153 |
+
elif file_type in ['jpg', 'jpeg', 'png']:
|
154 |
+
try:
|
155 |
+
from PIL import Image
|
156 |
+
image = Image.open(uploaded_file)
|
157 |
+
|
158 |
+
# Mostrar la imagen
|
159 |
+
with st.expander("Vista previa de la imagen"):
|
160 |
+
st.image(image, caption="Imagen cargada", use_container_width=True)
|
161 |
+
|
162 |
+
image_bytes = uploaded_file.getvalue()
|
163 |
+
image_parts = [
|
164 |
+
{
|
165 |
+
"mime_type": uploaded_file.type,
|
166 |
+
"data": image_bytes
|
167 |
+
}
|
168 |
+
]
|
169 |
+
is_image = True
|
170 |
+
st.success(f"Imagen cargada: {uploaded_file.name}")
|
171 |
+
except Exception as e:
|
172 |
+
st.error(f"Error al procesar la imagen: {str(e)}")
|
173 |
+
is_image = False
|
174 |
+
|
175 |
+
# Mover el botón aquí, después del cargador de archivos
|
176 |
submit_ad = st.button("GENERAR ANUNCIO")
|
177 |
|
178 |
with st.expander("Opciones avanzadas"):
|
|
|
235 |
emotional_angle,
|
236 |
ad_persona,
|
237 |
input_prompt, # Pass the new story prompt
|
238 |
+
selected_objective,
|
239 |
+
file_content if 'file_content' in locals() and file_content else "",
|
240 |
+
image_parts if 'image_parts' in locals() and is_image else None
|
241 |
)
|
242 |
|
243 |
if not isinstance(generated_ad, str):
|
requirements.txt
CHANGED
@@ -5,4 +5,6 @@ langchain
|
|
5 |
PyPDF2
|
6 |
chromadb
|
7 |
pdf2image
|
8 |
-
faiss-cpu
|
|
|
|
|
|
5 |
PyPDF2
|
6 |
chromadb
|
7 |
pdf2image
|
8 |
+
faiss-cpu
|
9 |
+
python-docx
|
10 |
+
Pillow
|