JeCabrera commited on
Commit
500f371
·
verified ·
1 Parent(s): f74cfea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -34
app.py CHANGED
@@ -1,22 +1,24 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
  system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
@@ -25,40 +27,32 @@ def respond(
25
 
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import google.generativeai as genai
3
+ import os
4
+ from dotenv import load_dotenv
5
 
6
+ # Cargar variables de entorno
7
+ load_dotenv()
 
 
8
 
9
+ # Configurar la API de Google Gemini
10
+ genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
11
 
12
  def respond(
13
  message,
14
+ history,
15
  system_message,
16
  max_tokens,
17
  temperature,
18
  top_p,
19
  ):
20
  messages = [{"role": "system", "content": system_message}]
21
+
22
  for val in history:
23
  if val[0]:
24
  messages.append({"role": "user", "content": val[0]})
 
27
 
28
  messages.append({"role": "user", "content": message})
29
 
30
+ # Configurar el modelo de Gemini
31
+ model_name = "gemini-1.5-pro" # Ajusta el modelo según sea necesario
32
+ generation_config = {
33
+ "temperature": temperature,
34
+ "top_p": top_p,
35
+ "max_output_tokens": max_tokens,
36
+ "response_mime_type": "text/plain",
37
+ }
38
+ model = genai.GenerativeModel(model_name=model_name, generation_config=generation_config)
39
+ chat_session = model.start_chat(
40
+ history=messages
41
+ )
42
+ response = chat_session.send_message(message)
43
+ return response.text
44
+
45
+
46
+ # Crear la interfaz de Gradio
 
47
  demo = gr.ChatInterface(
48
  respond,
49
  additional_inputs=[
50
+ gr.Textbox(value="You are a helpful assistant.", label="System message"),
51
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
54
  ],
55
  )
56
 
 
57
  if __name__ == "__main__":
58
  demo.launch()