import gradio as gr import google.generativeai as genai import os from dotenv import load_dotenv # Cargar variables de entorno load_dotenv() # Configurar la API de Google Gemini genai.configure(api_key=os.getenv("GEMINI_API_KEY")) def respond( message, history, system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Configurar el modelo de Gemini model_name = "gemini-1.5-pro" # Ajusta el modelo segĂșn sea necesario generation_config = { "temperature": temperature, "top_p": top_p, "max_output_tokens": max_tokens, "response_mime_type": "text/plain", } model = genai.GenerativeModel(model_name=model_name, generation_config=generation_config) chat_session = model.start_chat( history=messages ) response = chat_session.send_message(message) return response.text # Crear la interfaz de Gradio demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()