gradio_awsbr_mmchatbot / src /demo /bedrock_utils.py
Jedijamez's picture
Upload folder using huggingface_hub
1fa7a3d verified
raw
history blame
2.39 kB
import json
import base64
import os
from anthropic import AnthropicBedrock
from PIL import Image
class MultimodalInputHandler:
def __init__(self, text, image=None):
self.text = text
self.image = image
self.client = AnthropicBedrock(
aws_region='us-west-2'
)
async def handleInput(self):
if self.image:
# Determine the format of the image
if self.image.endswith(".jpg"):
formatType = "image/jpeg"
elif self.image.endswith(".png"):
formatType = "image/png"
elif self.image.endswith(".gif"):
formatType = "image/gif"
elif self.image.endswith(".webp"):
formatType = "image/webp"
# Encode the image as base64
b64EncodedImage = base64.b64encode(open(self.image, "rb").read())
# Send the image and text to the Anthropic API
with self.client.messages.stream(
model="anthropic.claude-3-sonnet-20240229-v1:0",
max_tokens=5000,
messages=[{
'role': 'user',
'content': [
{
"type": "image",
"source": {
"type": "base64",
"media_type": formatType,
"data": b64EncodedImage.decode("utf-8")
}
},
{
"type": "text",
"text": self.text
}
]
}]
) as stream:
for text in stream.text_stream:
yield text
else:
# Send the text to the Anthropic API
with self.client.messages.stream(
model="anthropic.claude-3-sonnet-20240229-v1:0",
max_tokens=5000,
messages=[{
'role': 'user',
'content': self.text
}]
) as stream:
for text in stream.text_stream:
yield text
# MultimodalInputHandler = MultimodalInputHandler("What is this image?", "path/to/my/file")
# print(MultimodalInputHandler.handleInput())