File size: 15,984 Bytes
e924b16 acfee14 e924b16 acfee14 a6c5f53 acfee14 e924b16 acfee14 e924b16 acfee14 e924b16 acfee14 e924b16 acfee14 e924b16 acfee14 e924b16 8b1be45 e924b16 8b1be45 e924b16 8b1be45 e924b16 8b1be45 e924b16 8b1be45 e924b16 8b1be45 e924b16 acfee14 8b1be45 e924b16 8b1be45 e924b16 8b1be45 e924b16 8b1be45 e924b16 8b1be45 e924b16 acfee14 e924b16 4f7957f a6c5f53 acfee14 a06316f e924b16 4f7957f a6c5f53 4f7957f 8b1be45 4f7957f e924b16 a6c5f53 e924b16 4f7957f e924b16 4f7957f e924b16 4f7957f e924b16 8b1be45 e924b16 4f7957f e924b16 4f7957f e924b16 8b1be45 e924b16 4f7957f e924b16 acfee14 e924b16 acfee14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import secrets
from functools import lru_cache
from typing import Any
import gradio as gr
from llmdataparser import ParserRegistry
from llmdataparser.base_parser import (
VALID_CATEGORIES,
DatasetDescription,
DatasetParser,
EvaluationMetric,
ParseEntry,
)
@lru_cache(maxsize=32)
def get_parser_instance(parser_name: str) -> DatasetParser[Any]:
"""Get a cached parser instance by name."""
return ParserRegistry.get_parser(parser_name)
def get_available_splits(parser: DatasetParser[Any]) -> list[str] | None:
"""Get available splits for the selected parser after loading."""
if not hasattr(parser, "split_names") or not parser.split_names:
return None
return list(parser.split_names)
def get_available_tasks(parser: DatasetParser[Any]) -> list[str]:
"""Get available tasks for the selected parser."""
if not hasattr(parser, "task_names"):
return ["default"]
return list(parser.task_names)
def format_entry_attributes(entry: ParseEntry) -> str:
"""Format all attributes of a ParseEntry except question and answer."""
from dataclasses import fields
# Get all field names from the dataclass
field_names = [field.name for field in fields(entry)]
# Filter out question and answer
filtered_fields = [
name for name in field_names if name not in ["question", "answer"]
]
# Build the formatted string
return "\n".join(f"{name}: {getattr(entry, name)}" for name in filtered_fields)
def load_and_parse(
parser_name: str, task_name: str | None, split_name: str | None
) -> tuple[int, str, str, str, gr.Dropdown, str]:
"""Load and parse the dataset, return the first entry and available splits."""
try:
parser = get_parser_instance(parser_name)
# Load the dataset
parser.load(
task_name=task_name if task_name != "default" else None,
split=split_name,
trust_remote_code=True,
)
# Get available splits after loading
available_splits = get_available_splits(parser)
# Parse the dataset
parser.parse(split_names=split_name, force=True)
# Get parsed data
parsed_data = parser.get_parsed_data
split_dropdown = gr.Dropdown(
choices=available_splits,
label="Select Split",
interactive=True,
value=None,
allow_custom_value=True,
)
info = parser.__repr__()
if not parsed_data:
return 0, "", "", "", split_dropdown, info
# Get the first entry
first_entry = parsed_data[0]
return (
0, # Return first index instead of list of indices
first_entry.question,
first_entry.answer,
format_entry_attributes(first_entry),
split_dropdown,
info,
)
except Exception as e:
# Make the error message more user-friendly and detailed
error_msg = f"Failed to load dataset: {str(e)}\nParser: {parser_name}\nTask: {task_name}\nSplit: {split_name}"
return 0, error_msg, "", "", [], ""
def update_entry(
parsed_data_index: int | None, parser_name: str
) -> tuple[str, str, str]:
"""Update the displayed entry based on the selected index."""
try:
if not parser_name:
return "Please select a parser first", "", ""
parser = get_parser_instance(parser_name)
parsed_data = parser.get_parsed_data
if not parsed_data:
return "No data available", "", ""
if parsed_data_index is None:
# Random selection using secrets instead of random
random_index = secrets.randbelow(len(parsed_data))
entry = parsed_data[random_index]
else:
# Ensure index is within bounds
index = max(0, min(parsed_data_index, len(parsed_data) - 1))
entry = parsed_data[index]
return (
entry.question,
entry.answer,
format_entry_attributes(entry),
)
except Exception as e:
return f"Error: {str(e)}", "", ""
def update_parser_options(parser_name: str) -> tuple[gr.Dropdown, gr.Dropdown, str]:
"""Update available tasks and splits for the selected parser."""
try:
parser = get_parser_instance(parser_name)
tasks = get_available_tasks(parser)
default_task = getattr(parser, "_default_task", "default")
# Update task dropdown
task_dropdown = gr.Dropdown(
choices=tasks,
value=default_task,
label="Select Task",
interactive=True,
allow_custom_value=True,
)
# Update split dropdown - Note the value is now explicitly None
splits = get_available_splits(parser)
split_dropdown = gr.Dropdown(
choices=splits,
label="Select Split",
interactive=True,
value=None,
allow_custom_value=True,
)
info = parser.__repr__()
return task_dropdown, split_dropdown, info
except Exception as e:
return (
gr.Dropdown(choices=["default"], value="default"),
gr.Dropdown(choices=[]),
f"Error: {str(e)}",
)
def clear_parser_cache() -> None:
"""Clear the parser cache."""
get_parser_instance.cache_clear()
def format_dataset_description(description: DatasetDescription) -> str:
"""Format DatasetDescription into a readable string."""
formatted = [
f"# {description.name}",
f"\n**Purpose**: {description.purpose}",
f"\n**Language**: {description.language}",
f"\n**Format**: {description.format}",
f"\n**Source**: {description.source}",
f"\n**Characteristics**: {description.characteristics}",
]
if description.citation:
formatted.append(f"\n**Citation**:\n```\n{description.citation}\n```")
if description.additional_info:
formatted.append("\n**Additional Information**:")
for key, value in description.additional_info.items():
formatted.append(f"- {key}: {value}")
return "\n".join(formatted)
def get_primary_metrics(metrics: list[EvaluationMetric]) -> list[str]:
"""Get list of primary metric names."""
return [metric.name for metric in metrics if metric.primary]
def format_metric_details(metric: EvaluationMetric) -> str:
"""Format a single EvaluationMetric into a readable string."""
return f"""# {metric.name}<br>
**Type**: {metric.type}<br>
**Description**: {metric.description}"""
def update_dataset_info(parser_name: str) -> tuple:
"""Update dataset description and evaluation metrics information."""
try:
parser = get_parser_instance(parser_name)
description = parser.get_dataset_description()
metrics = parser.get_evaluation_metrics()
# Format description
desc_text = format_dataset_description(description)
# Get primary metrics for dropdown
primary_metrics = get_primary_metrics(metrics)
# Format details for first metric (or empty if no metrics)
first_metric = metrics[0] if metrics else None
metric_details = format_metric_details(first_metric) if first_metric else ""
return (
gr.Markdown(value=desc_text),
gr.Dropdown(
choices=primary_metrics,
value=primary_metrics[0] if primary_metrics else None,
),
gr.Markdown(value=metric_details),
)
except Exception as e:
return (
gr.Markdown(value=f"Error loading dataset description: {str(e)}"),
gr.Dropdown(choices=[]),
gr.Markdown(value=""),
)
def update_metric_details(metric_name: str, parser_name: str) -> str:
"""Update the displayed metric details when selection changes."""
try:
parser = get_parser_instance(parser_name)
metrics = parser.get_evaluation_metrics()
selected_metric = next((m for m in metrics if m.name == metric_name), None)
return format_metric_details(selected_metric) if selected_metric else ""
except Exception as e:
return f"Error loading metric details: {str(e)}"
def get_parser_categories(parser_name: str) -> list[str]:
"""Get categories for a specific parser."""
try:
parser = get_parser_instance(parser_name)
description = parser.get_dataset_description()
return description.category
except Exception:
return []
def filter_parsers_by_category(category: str | None) -> list[str]:
"""Filter available parsers by category."""
if not category:
return ParserRegistry.list_parsers()
filtered_parsers = []
for parser_name in ParserRegistry.list_parsers():
categories = get_parser_categories(parser_name)
if category in categories:
filtered_parsers.append(parser_name)
return filtered_parsers
def create_interface() -> gr.Blocks:
"""Create and return the Gradio interface."""
with gr.Blocks(css="footer {display: none !important}") as demo:
# Add header section with purpose and GitHub info
gr.Markdown("""
# LLM Evaluation Dataset Parser
### 🎯 Purpose
A unified interface for parsing and exploring various LLM benchmark datasets (MMLU, MMLU-Pro, GSM8k, and more).
This tool helps researchers and developers to:
- Easily explore different benchmark datasets
- Access standardized parsing for multiple dataset formats
- View dataset descriptions and evaluation metrics
### 🔗 Links
- [GitHub Repository](https://github.com/jeff52415/LLMDataParser)
- [Documentation](https://github.com/jeff52415/LLMDataParser#readme)
---
""")
# State management
parser_state = gr.State("")
dataset_status = gr.Textbox(label="Dataset Status", interactive=False)
with gr.Tabs():
with gr.Tab("Dataset Explorer"):
with gr.Row():
with gr.Column(scale=1):
# Add category dropdown before parser selection
category_dropdown = gr.Dropdown(
choices=["All"] + list(VALID_CATEGORIES),
label="Filter by Category",
value="All",
interactive=True,
)
# Parser selection and controls
available_parsers = ParserRegistry.list_parsers()
parser_dropdown = gr.Dropdown(
choices=available_parsers,
label="Select Parser",
value=available_parsers[0] if available_parsers else None,
interactive=True,
allow_custom_value=True,
)
task_dropdown = gr.Dropdown(
choices=["default"],
label="Select Task",
value="default",
interactive=True,
allow_custom_value=True,
)
split_dropdown = gr.Dropdown(
choices=[],
label="Select Split",
interactive=True,
value=None,
allow_custom_value=True,
)
load_button = gr.Button(
"Load and Parse Dataset", variant="primary"
)
# Entry selection
entry_index = gr.Number(
label="Select Entry Index (empty for random)",
precision=0,
interactive=True,
)
update_button = gr.Button(
"Update/Random Entry", variant="secondary"
)
with gr.Column(scale=2):
# Output displays
question_output = gr.Textbox(
label="Question", lines=5, show_copy_button=True
)
answer_output = gr.Textbox(
label="Answer", lines=5, show_copy_button=True
)
attributes_output = gr.Textbox(
label="Other Attributes", lines=5, show_copy_button=True
)
with gr.Tab("Dataset Information"):
with gr.Row():
with gr.Column(scale=2):
# Dataset description
dataset_description = gr.Markdown()
with gr.Column(scale=1):
# Evaluation metrics
gr.Markdown("## Evaluation Metrics")
metric_dropdown = gr.Dropdown(
label="Select Primary Metric", interactive=True
)
metric_details = gr.Markdown()
# Add new event handler for category filtering
def update_parser_list(category: str) -> gr.Dropdown:
filtered_parsers = filter_parsers_by_category(
None if category == "All" else category
)
return gr.Dropdown(
choices=filtered_parsers,
value=filtered_parsers[0] if filtered_parsers else None,
)
category_dropdown.change(
fn=update_parser_list, inputs=[category_dropdown], outputs=[parser_dropdown]
)
# Event handlers
parser_dropdown.change(
fn=update_parser_options,
inputs=parser_dropdown,
outputs=[
task_dropdown,
split_dropdown,
dataset_status,
],
).then(lambda x: x, inputs=parser_dropdown, outputs=parser_state).then(
fn=update_dataset_info,
inputs=[parser_dropdown],
outputs=[dataset_description, metric_dropdown, metric_details],
)
load_button.click(
fn=load_and_parse,
inputs=[parser_dropdown, task_dropdown, split_dropdown],
outputs=[
entry_index,
question_output,
answer_output,
attributes_output,
split_dropdown,
dataset_status,
],
api_name="load_and_parse",
show_progress="full",
).then(
fn=update_dataset_info,
inputs=[parser_dropdown],
outputs=[dataset_description, metric_dropdown, metric_details],
)
update_button.click(
fn=update_entry,
inputs=[entry_index, parser_state],
outputs=[
question_output,
answer_output,
attributes_output,
],
api_name="update_entry",
)
metric_dropdown.change(
fn=update_metric_details,
inputs=[metric_dropdown, parser_dropdown],
outputs=metric_details,
)
return demo
if __name__ == "__main__":
print("Starting Gradio interface...") # Add debug logging
demo = create_interface()
try:
demo.launch(
show_error=True, # Changed to True for debugging
)
except Exception as e:
print(f"Error launching Gradio: {e}") # Add error logging
import traceback
traceback.print_exc()
|