docs: add new parser
Browse files- docs/adding_new_parser.md +199 -0
- llmdataparser/__init__.py +2 -2
- llmdataparser/base_parser.py +2 -9
docs/adding_new_parser.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adding a New Dataset Parser
|
2 |
+
|
3 |
+
This guide explains how to add a new dataset parser to the llmdataparser library. The library is designed to make it easy to add support for new datasets while maintaining consistent interfaces and functionality.
|
4 |
+
|
5 |
+
## Step-by-Step Guide
|
6 |
+
|
7 |
+
### 1. Create a New Parser Class
|
8 |
+
|
9 |
+
Create a new file `your_dataset_parser.py` in the `llmdataparser` folder. Your parser should inherit from `HuggingFaceDatasetParser[T]` where T is your custom entry type.
|
10 |
+
|
11 |
+
```python
|
12 |
+
from llmdataparser.base_parser import (
|
13 |
+
DatasetDescription,
|
14 |
+
EvaluationMetric,
|
15 |
+
HuggingFaceDatasetParser,
|
16 |
+
HuggingFaceParseEntry,
|
17 |
+
)
|
18 |
+
|
19 |
+
@dataclass(frozen=True, kw_only=True, slots=True)
|
20 |
+
class YourDatasetParseEntry(HuggingFaceParseEntry):
|
21 |
+
"""Custom entry class for your dataset."""
|
22 |
+
# Add any additional fields specific to your dataset
|
23 |
+
custom_field: str
|
24 |
+
|
25 |
+
@classmethod
|
26 |
+
def create(cls, prompt: str, answer: str, raw_question: str,
|
27 |
+
raw_answer: str, task_name: str, custom_field: str) -> "YourDatasetParseEntry":
|
28 |
+
return cls(
|
29 |
+
prompt=prompt,
|
30 |
+
answer=answer,
|
31 |
+
raw_question=raw_question,
|
32 |
+
raw_answer=raw_answer,
|
33 |
+
task_name=task_name,
|
34 |
+
custom_field=custom_field
|
35 |
+
)
|
36 |
+
|
37 |
+
class YourDatasetParser(HuggingFaceDatasetParser[YourDatasetParseEntry]):
|
38 |
+
"""Parser for your dataset."""
|
39 |
+
|
40 |
+
# Required class variables
|
41 |
+
_data_source = "huggingface/your-dataset"
|
42 |
+
_default_task = "default"
|
43 |
+
_task_names = ["task1", "task2", "task3"]
|
44 |
+
_default_system_prompt = YOUR_SYSTEM_PROMPT
|
45 |
+
```
|
46 |
+
|
47 |
+
### 2. Define System Prompt
|
48 |
+
|
49 |
+
Add your system prompt to `llmdataparser/prompts.py`:
|
50 |
+
|
51 |
+
```python
|
52 |
+
YOUR_SYSTEM_PROMPT: Final[str] = textwrap.dedent(
|
53 |
+
"""\
|
54 |
+
You are an expert in [your domain]. Your task is to [describe the task].
|
55 |
+
|
56 |
+
Instructions:
|
57 |
+
1. [First instruction]
|
58 |
+
2. [Second instruction]
|
59 |
+
...
|
60 |
+
"""
|
61 |
+
)
|
62 |
+
```
|
63 |
+
|
64 |
+
### 3. Implement Required Methods
|
65 |
+
|
66 |
+
Your parser needs to implement these key methods:
|
67 |
+
|
68 |
+
```python
|
69 |
+
def process_entry(
|
70 |
+
self,
|
71 |
+
row: dict[str, Any],
|
72 |
+
task_name: str | None = None,
|
73 |
+
**kwargs: Any
|
74 |
+
) -> YourDatasetParseEntry:
|
75 |
+
"""Process a single dataset entry."""
|
76 |
+
# Extract data from the row
|
77 |
+
raw_question = row["question"]
|
78 |
+
raw_answer = row["answer"]
|
79 |
+
task = task_name or self._get_current_task(row)
|
80 |
+
|
81 |
+
# Format the prompt
|
82 |
+
prompt = f"{self._system_prompt}\nQuestion: {raw_question}\nAnswer:"
|
83 |
+
|
84 |
+
return YourDatasetParseEntry.create(
|
85 |
+
prompt=prompt,
|
86 |
+
answer=raw_answer,
|
87 |
+
raw_question=raw_question,
|
88 |
+
raw_answer=raw_answer,
|
89 |
+
task_name=task,
|
90 |
+
custom_field=row["custom_field"]
|
91 |
+
)
|
92 |
+
|
93 |
+
def get_dataset_description(self) -> DatasetDescription:
|
94 |
+
"""Returns description of your dataset."""
|
95 |
+
return DatasetDescription.create(
|
96 |
+
name="Your Dataset Name",
|
97 |
+
purpose="Purpose of the dataset",
|
98 |
+
source="Dataset source/URL",
|
99 |
+
language="Dataset language",
|
100 |
+
format="Data format (e.g., multiple choice, free text)",
|
101 |
+
characteristics="Key characteristics of the dataset",
|
102 |
+
citation="Dataset citation if available"
|
103 |
+
)
|
104 |
+
|
105 |
+
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
|
106 |
+
"""Returns recommended evaluation metrics."""
|
107 |
+
return [
|
108 |
+
EvaluationMetric.create(
|
109 |
+
name="metric_name",
|
110 |
+
type="metric_type",
|
111 |
+
description="Metric description",
|
112 |
+
implementation="implementation_details",
|
113 |
+
primary=True
|
114 |
+
)
|
115 |
+
]
|
116 |
+
```
|
117 |
+
|
118 |
+
### 4. Add Example Usage
|
119 |
+
|
120 |
+
Add example usage at the bottom of your parser file:
|
121 |
+
|
122 |
+
```python
|
123 |
+
if __name__ == "__main__":
|
124 |
+
# Example usage
|
125 |
+
parser = YourDatasetParser()
|
126 |
+
parser.load()
|
127 |
+
parser.parse()
|
128 |
+
|
129 |
+
# Get parsed data
|
130 |
+
parsed_data = parser.get_parsed_data
|
131 |
+
|
132 |
+
# Print example entry
|
133 |
+
if parsed_data:
|
134 |
+
example = parsed_data[0]
|
135 |
+
print("\nExample parsed entry:")
|
136 |
+
print(f"Question: {example.raw_question}")
|
137 |
+
print(f"Answer: {example.answer}")
|
138 |
+
```
|
139 |
+
|
140 |
+
### 5. Create Tests
|
141 |
+
|
142 |
+
Create a test file `tests/test_your_dataset_parser.py`:
|
143 |
+
|
144 |
+
```python
|
145 |
+
import pytest
|
146 |
+
from llmdataparser.your_dataset_parser import YourDatasetParser, YourDatasetParseEntry
|
147 |
+
|
148 |
+
def test_parser_initialization():
|
149 |
+
parser = YourDatasetParser()
|
150 |
+
assert parser._data_source == "huggingface/your-dataset"
|
151 |
+
assert parser._default_task == "default"
|
152 |
+
assert "task1" in parser._task_names
|
153 |
+
|
154 |
+
def test_process_entry():
|
155 |
+
parser = YourDatasetParser()
|
156 |
+
sample_row = {
|
157 |
+
"question": "Sample question",
|
158 |
+
"answer": "Sample answer",
|
159 |
+
"custom_field": "Custom value"
|
160 |
+
}
|
161 |
+
|
162 |
+
entry = parser.process_entry(sample_row)
|
163 |
+
assert isinstance(entry, YourDatasetParseEntry)
|
164 |
+
assert entry.raw_question == "Sample question"
|
165 |
+
assert entry.custom_field == "Custom value"
|
166 |
+
```
|
167 |
+
|
168 |
+
## Best Practices
|
169 |
+
|
170 |
+
1. **Type Safety**: Use type hints consistently and ensure your parser is properly typed.
|
171 |
+
1. **Documentation**: Add clear docstrings and comments explaining your parser's functionality.
|
172 |
+
1. **Error Handling**: Include appropriate error checking and validation.
|
173 |
+
1. **Testing**: Write comprehensive tests covering different scenarios.
|
174 |
+
1. **System Prompt**: Design your system prompt carefully to guide the model effectively.
|
175 |
+
|
176 |
+
## Examples
|
177 |
+
|
178 |
+
Look at existing parsers for reference:
|
179 |
+
|
180 |
+
- `mmlu_parser.py` for multiple-choice questions
|
181 |
+
- `gsm8k_parser.py` for math word problems
|
182 |
+
- `humaneval_parser.py` for code generation tasks
|
183 |
+
|
184 |
+
## Common Patterns
|
185 |
+
|
186 |
+
1. **Parse Entry Class**: Create a custom parse entry class if you need additional fields.
|
187 |
+
1. **Task Names**: Define all available tasks in `_task_names`.
|
188 |
+
1. **System Prompt**: Write clear instructions in the system prompt.
|
189 |
+
1. **Process Entry**: Handle data extraction and formatting in `process_entry`.
|
190 |
+
1. **Dataset Description**: Provide comprehensive dataset information.
|
191 |
+
1. **Evaluation Metrics**: Define appropriate metrics for your dataset.
|
192 |
+
|
193 |
+
## Testing Your Parser
|
194 |
+
|
195 |
+
1. Run the example usage code to verify basic functionality
|
196 |
+
1. Run pytest to execute your test cases
|
197 |
+
1. Try different dataset splits and tasks
|
198 |
+
1. Verify the parsed output format
|
199 |
+
1. Check error handling with invalid inputs
|
llmdataparser/__init__.py
CHANGED
@@ -10,7 +10,7 @@ from .math_parser import MATHDatasetParser
|
|
10 |
from .mbpp_parser import MBPPDatasetParser
|
11 |
from .mgsm_parser import MGSMDatasetParser
|
12 |
from .mmlu_parser import (
|
13 |
-
|
14 |
MMLUProDatasetParser,
|
15 |
MMLUReduxDatasetParser,
|
16 |
TMMLUPlusDatasetParser,
|
@@ -44,7 +44,7 @@ class ParserRegistry:
|
|
44 |
|
45 |
|
46 |
# Register parsers
|
47 |
-
ParserRegistry.register_parser("mmlu",
|
48 |
ParserRegistry.register_parser("mmlupro", MMLUProDatasetParser)
|
49 |
ParserRegistry.register_parser("mmluredux", MMLUReduxDatasetParser)
|
50 |
ParserRegistry.register_parser("tmmluplus", TMMLUPlusDatasetParser)
|
|
|
10 |
from .mbpp_parser import MBPPDatasetParser
|
11 |
from .mgsm_parser import MGSMDatasetParser
|
12 |
from .mmlu_parser import (
|
13 |
+
BaseMMLUDatasetParser,
|
14 |
MMLUProDatasetParser,
|
15 |
MMLUReduxDatasetParser,
|
16 |
TMMLUPlusDatasetParser,
|
|
|
44 |
|
45 |
|
46 |
# Register parsers
|
47 |
+
ParserRegistry.register_parser("mmlu", BaseMMLUDatasetParser)
|
48 |
ParserRegistry.register_parser("mmlupro", MMLUProDatasetParser)
|
49 |
ParserRegistry.register_parser("mmluredux", MMLUReduxDatasetParser)
|
50 |
ParserRegistry.register_parser("tmmluplus", TMMLUPlusDatasetParser)
|
llmdataparser/base_parser.py
CHANGED
@@ -119,20 +119,13 @@ class DatasetParser(Generic[T], ABC):
|
|
119 |
T: The processed entry, typically an instance of a subclass of ParseEntry.
|
120 |
"""
|
121 |
|
|
|
122 |
def get_dataset_description(self) -> DatasetDescription:
|
123 |
"""Returns a standardized description of the dataset."""
|
124 |
-
return DatasetDescription(
|
125 |
-
name="Unknown",
|
126 |
-
purpose="Not specified",
|
127 |
-
source="Not specified",
|
128 |
-
language="Not specified",
|
129 |
-
format="Not specified",
|
130 |
-
characteristics="Not specified",
|
131 |
-
)
|
132 |
|
|
|
133 |
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
|
134 |
"""Returns the recommended evaluation metrics for the dataset."""
|
135 |
-
return []
|
136 |
|
137 |
|
138 |
@dataclass(frozen=True, kw_only=True, slots=True)
|
|
|
119 |
T: The processed entry, typically an instance of a subclass of ParseEntry.
|
120 |
"""
|
121 |
|
122 |
+
@abstractmethod
|
123 |
def get_dataset_description(self) -> DatasetDescription:
|
124 |
"""Returns a standardized description of the dataset."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
@abstractmethod
|
127 |
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
|
128 |
"""Returns the recommended evaluation metrics for the dataset."""
|
|
|
129 |
|
130 |
|
131 |
@dataclass(frozen=True, kw_only=True, slots=True)
|