Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from ..modules import sparse as sp | |
FP16_MODULES = ( | |
nn.Conv1d, | |
nn.Conv2d, | |
nn.Conv3d, | |
nn.ConvTranspose1d, | |
nn.ConvTranspose2d, | |
nn.ConvTranspose3d, | |
nn.Linear, | |
sp.SparseConv3d, | |
sp.SparseInverseConv3d, | |
sp.SparseLinear, | |
) | |
def convert_module_to_f16(l): | |
""" | |
Convert primitive modules to float16. | |
""" | |
if isinstance(l, FP16_MODULES): | |
for p in l.parameters(): | |
p.data = p.data.half() | |
def convert_module_to_f32(l): | |
""" | |
Convert primitive modules to float32, undoing convert_module_to_f16(). | |
""" | |
if isinstance(l, FP16_MODULES): | |
for p in l.parameters(): | |
p.data = p.data.float() | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |