Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import torch | |
import math | |
from .. import SparseTensor | |
from .. import DEBUG, ATTN | |
if ATTN == 'xformers': | |
import xformers.ops as xops | |
elif ATTN == 'flash_attn': | |
import flash_attn | |
else: | |
raise ValueError(f"Unknown attention module: {ATTN}") | |
__all__ = [ | |
'sparse_windowed_scaled_dot_product_self_attention', | |
] | |
def calc_window_partition( | |
tensor: SparseTensor, | |
window_size: Union[int, Tuple[int, ...]], | |
shift_window: Union[int, Tuple[int, ...]] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]: | |
""" | |
Calculate serialization and partitioning for a set of coordinates. | |
Args: | |
tensor (SparseTensor): The input tensor. | |
window_size (int): The window size to use. | |
shift_window (Tuple[int, ...]): The shift of serialized coordinates. | |
Returns: | |
(torch.Tensor): Forwards indices. | |
(torch.Tensor): Backwards indices. | |
(List[int]): Sequence lengths. | |
(List[int]): Sequence batch indices. | |
""" | |
DIM = tensor.coords.shape[1] - 1 | |
shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window | |
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size | |
shifted_coords = tensor.coords.clone().detach() | |
shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0) | |
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist() | |
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)] | |
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1] | |
shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0) | |
shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1) | |
fwd_indices = torch.argsort(shifted_indices) | |
bwd_indices = torch.empty_like(fwd_indices) | |
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device) | |
seq_lens = torch.bincount(shifted_indices) | |
seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0] | |
mask = seq_lens != 0 | |
seq_lens = seq_lens[mask].tolist() | |
seq_batch_indices = seq_batch_indices[mask].tolist() | |
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices | |
def sparse_windowed_scaled_dot_product_self_attention( | |
qkv: SparseTensor, | |
window_size: int, | |
shift_window: Tuple[int, int, int] = (0, 0, 0) | |
) -> SparseTensor: | |
""" | |
Apply windowed scaled dot product self attention to a sparse tensor. | |
Args: | |
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs. | |
window_size (int): The window size to use. | |
shift_window (Tuple[int, int, int]): The shift of serialized coordinates. | |
shift (int): The shift to use. | |
""" | |
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]" | |
serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}' | |
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name) | |
if serialization_spatial_cache is None: | |
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window) | |
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices)) | |
else: | |
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache | |
M = fwd_indices.shape[0] | |
T = qkv.feats.shape[0] | |
H = qkv.feats.shape[2] | |
C = qkv.feats.shape[3] | |
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C] | |
if DEBUG: | |
start = 0 | |
qkv_coords = qkv.coords[fwd_indices] | |
for i in range(len(seq_lens)): | |
seq_coords = qkv_coords[start:start+seq_lens[i]] | |
assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch" | |
assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \ | |
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded" | |
start += seq_lens[i] | |
if all([seq_len == window_size for seq_len in seq_lens]): | |
B = len(seq_lens) | |
N = window_size | |
qkv_feats = qkv_feats.reshape(B, N, 3, H, C) | |
if ATTN == 'xformers': | |
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C] | |
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C] | |
elif ATTN == 'flash_attn': | |
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C] | |
else: | |
raise ValueError(f"Unknown attention module: {ATTN}") | |
out = out.reshape(B * N, H, C) # [M, H, C] | |
else: | |
if ATTN == 'xformers': | |
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C] | |
q = q.unsqueeze(0) # [1, M, H, C] | |
k = k.unsqueeze(0) # [1, M, H, C] | |
v = v.unsqueeze(0) # [1, M, H, C] | |
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens) | |
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C] | |
elif ATTN == 'flash_attn': | |
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \ | |
.to(qkv.device).int() | |
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C] | |
out = out[bwd_indices] # [T, H, C] | |
if DEBUG: | |
qkv_coords = qkv_coords[bwd_indices] | |
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch" | |
return qkv.replace(out) | |