JeffreyXiang commited on
Commit
bd46f72
1 Parent(s): 3162a90

Add more setting

Browse files
Files changed (1) hide show
  1. app.py +45 -7
app.py CHANGED
@@ -15,6 +15,9 @@ from trellis.representations import Gaussian, MeshExtractResult
15
  from trellis.utils import render_utils, postprocessing_utils
16
 
17
 
 
 
 
18
  def preprocess_image(image: Image.Image) -> Image.Image:
19
  """
20
  Preprocess the input image.
@@ -70,18 +73,39 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
70
 
71
 
72
  @spaces.GPU
73
- def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
74
  """
75
  Convert an image to a 3D model.
76
 
77
  Args:
78
  image (Image.Image): The input image.
 
 
 
 
 
 
79
 
80
  Returns:
81
  dict: The information of the generated 3D model.
82
  str: The path to the video of the 3D model.
83
  """
84
- outputs = pipeline(image, formats=["gaussian", "mesh"], preprocess_image=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
86
  video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
87
  video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
@@ -131,11 +155,25 @@ with gr.Blocks() as demo:
131
  with gr.Row():
132
  with gr.Column():
133
  image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
134
- generate_btn = gr.Button("Generate")
 
 
 
 
 
 
 
 
 
 
 
135
 
136
- gr.Markdown("GLB Extraction Parameters:")
137
- mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
138
- texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
 
 
 
139
  extract_glb_btn = gr.Button("Extract GLB", interactive=False)
140
 
141
  with gr.Column():
@@ -168,7 +206,7 @@ with gr.Blocks() as demo:
168
 
169
  generate_btn.click(
170
  image_to_3d,
171
- inputs=[image_prompt],
172
  outputs=[model, video_output],
173
  ).then(
174
  activate_button,
 
15
  from trellis.utils import render_utils, postprocessing_utils
16
 
17
 
18
+ MAX_SEED = np.iinfo(np.int32).max
19
+
20
+
21
  def preprocess_image(image: Image.Image) -> Image.Image:
22
  """
23
  Preprocess the input image.
 
73
 
74
 
75
  @spaces.GPU
76
+ def image_to_3d(image: Image.Image, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
77
  """
78
  Convert an image to a 3D model.
79
 
80
  Args:
81
  image (Image.Image): The input image.
82
+ seed (int): The random seed.
83
+ randomize_seed (bool): Whether to randomize the seed.
84
+ ss_guidance_strength (float): The guidance strength for sparse structure generation.
85
+ ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
86
+ slat_guidance_strength (float): The guidance strength for structured latent generation.
87
+ slat_sampling_steps (int): The number of sampling steps for structured latent generation.
88
 
89
  Returns:
90
  dict: The information of the generated 3D model.
91
  str: The path to the video of the 3D model.
92
  """
93
+ if randomize_seed:
94
+ seed = np.random.randint(0, MAX_SEED)
95
+ torch.manual_seed(seed)
96
+ outputs = pipeline(
97
+ image,
98
+ formats=["gaussian", "mesh"],
99
+ preprocess_image=False,
100
+ sparse_structure_sampler_params={
101
+ "steps": ss_sampling_steps,
102
+ "cfg_strength": ss_guidance_strength,
103
+ },
104
+ slat_sampler_params={
105
+ "steps": slat_sampling_steps,
106
+ "cfg_strength": slat_guidance_strength,
107
+ },
108
+ )
109
  video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
110
  video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
111
  video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
 
155
  with gr.Row():
156
  with gr.Column():
157
  image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
158
+
159
+ with gr.Accordion(label="Generation Settings", open=False):
160
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
161
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
162
+ gr.Markdown("Stage 1: Sparse Structure Generation")
163
+ with gr.Row():
164
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=5.0, step=0.1)
165
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
166
+ gr.Markdown("Stage 2: Structured Latent Generation")
167
+ with gr.Row():
168
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=5.0, step=0.1)
169
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1)
170
 
171
+ generate_btn = gr.Button("Generate")
172
+
173
+ with gr.Accordion(label="GLB Extraction Settings", open=False):
174
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
175
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
176
+
177
  extract_glb_btn = gr.Button("Extract GLB", interactive=False)
178
 
179
  with gr.Column():
 
206
 
207
  generate_btn.click(
208
  image_to_3d,
209
+ inputs=[image_prompt, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
210
  outputs=[model, video_output],
211
  ).then(
212
  activate_button,