JeffreyXiang commited on
Commit
db6a3b7
1 Parent(s): ceccc26
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +152 -0
  2. assets/example_image/T.png +0 -0
  3. assets/example_image/typical_building_building.png +0 -0
  4. assets/example_image/typical_building_castle.png +0 -0
  5. assets/example_image/typical_building_colorful_cottage.png +0 -0
  6. assets/example_image/typical_building_maya_pyramid.png +0 -0
  7. assets/example_image/typical_building_mushroom.png +0 -0
  8. assets/example_image/typical_building_space_station.png +0 -0
  9. assets/example_image/typical_creature_dragon.png +0 -0
  10. assets/example_image/typical_creature_elephant.png +0 -0
  11. assets/example_image/typical_creature_furry.png +0 -0
  12. assets/example_image/typical_creature_quadruped.png +0 -0
  13. assets/example_image/typical_creature_robot_crab.png +0 -0
  14. assets/example_image/typical_creature_robot_dinosour.png +0 -0
  15. assets/example_image/typical_creature_rock_monster.png +0 -0
  16. assets/example_image/typical_humanoid_block_robot.png +0 -0
  17. assets/example_image/typical_humanoid_dragonborn.png +0 -0
  18. assets/example_image/typical_humanoid_dwarf.png +0 -0
  19. assets/example_image/typical_humanoid_goblin.png +0 -0
  20. assets/example_image/typical_humanoid_mech.png +0 -0
  21. assets/example_image/typical_misc_crate.png +0 -0
  22. assets/example_image/typical_misc_fireplace.png +0 -0
  23. assets/example_image/typical_misc_gate.png +0 -0
  24. assets/example_image/typical_misc_lantern.png +0 -0
  25. assets/example_image/typical_misc_magicbook.png +0 -0
  26. assets/example_image/typical_misc_mailbox.png +0 -0
  27. assets/example_image/typical_misc_monster_chest.png +0 -0
  28. assets/example_image/typical_misc_paper_machine.png +0 -0
  29. assets/example_image/typical_misc_phonograph.png +0 -0
  30. assets/example_image/typical_misc_portal2.png +0 -0
  31. assets/example_image/typical_misc_storage_chest.png +0 -0
  32. assets/example_image/typical_misc_telephone.png +0 -0
  33. assets/example_image/typical_misc_television.png +0 -0
  34. assets/example_image/typical_misc_workbench.png +0 -0
  35. assets/example_image/typical_vehicle_biplane.png +0 -0
  36. assets/example_image/typical_vehicle_bulldozer.png +0 -0
  37. assets/example_image/typical_vehicle_cart.png +0 -0
  38. assets/example_image/typical_vehicle_excavator.png +0 -0
  39. assets/example_image/typical_vehicle_helicopter.png +0 -0
  40. assets/example_image/typical_vehicle_locomotive.png +0 -0
  41. assets/example_image/typical_vehicle_pirate_ship.png +0 -0
  42. assets/example_image/weatherworn_misc_paper_machine3.png +0 -0
  43. requirements.txt +28 -0
  44. trellis/__init__.py +6 -0
  45. trellis/models/__init__.py +70 -0
  46. trellis/models/sparse_structure_flow.py +200 -0
  47. trellis/models/sparse_structure_vae.py +306 -0
  48. trellis/models/structured_latent_flow.py +262 -0
  49. trellis/models/structured_latent_vae/__init__.py +4 -0
  50. trellis/models/structured_latent_vae/base.py +117 -0
app.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ # from gradio_litmodel3d import LitModel3D
3
+
4
+ import os
5
+ from typing import *
6
+ import imageio
7
+ import uuid
8
+ from PIL import Image
9
+ from trellis.pipelines import TrellisImageTo3DPipeline
10
+ from trellis.utils import render_utils, postprocessing_utils
11
+
12
+
13
+ def preprocess_image(image: Image.Image) -> Image.Image:
14
+ """
15
+ Preprocess the input image.
16
+
17
+ Args:
18
+ image (Image.Image): The input image.
19
+
20
+ Returns:
21
+ Image.Image: The preprocessed image.
22
+ """
23
+ return pipeline.preprocess_image(image)
24
+
25
+
26
+ def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
27
+ """
28
+ Convert an image to a 3D model.
29
+
30
+ Args:
31
+ image (Image.Image): The input image.
32
+
33
+ Returns:
34
+ dict: The information of the generated 3D model.
35
+ str: The path to the video of the 3D model.
36
+ """
37
+ outputs = pipeline(image, formats=["gaussian", "mesh"], preprocess_image=False)
38
+ video = render_utils.render_video(outputs['gaussian'][0])['color']
39
+ model_id = uuid.uuid4()
40
+ video_path = f"/tmp/Trellis-demo/{model_id}.mp4"
41
+ os.makedirs(os.path.dirname(video_path), exist_ok=True)
42
+ imageio.mimsave(video_path, video, fps=30)
43
+ model = {'gaussian': outputs['gaussian'][0], 'mesh': outputs['mesh'][0], 'model_id': model_id}
44
+ return model, video_path
45
+
46
+
47
+ def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
48
+ """
49
+ Extract a GLB file from the 3D model.
50
+
51
+ Args:
52
+ model (dict): The generated 3D model.
53
+ mesh_simplify (float): The mesh simplification factor.
54
+ texture_size (int): The texture resolution.
55
+
56
+ Returns:
57
+ str: The path to the extracted GLB file.
58
+ """
59
+ glb = postprocessing_utils.to_glb(model['gaussian'], model['mesh'], simplify=mesh_simplify, texture_size=texture_size)
60
+ glb_path = f"/tmp/Trellis-demo/{model['model_id']}.glb"
61
+ glb.export(glb_path)
62
+ return glb_path, glb_path
63
+
64
+
65
+ def activate_button() -> gr.Button:
66
+ return gr.Button(interactive=True)
67
+
68
+
69
+ def deactivate_button() -> gr.Button:
70
+ return gr.Button(interactive=False)
71
+
72
+
73
+ with gr.Blocks() as demo:
74
+ with gr.Row():
75
+ with gr.Column():
76
+ image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
77
+ generate_btn = gr.Button("Generate", interactive=False)
78
+
79
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
80
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
81
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
82
+
83
+ with gr.Column():
84
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
85
+ model_output = gr.Model3D(label="Extracted GLB", height=300)
86
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
87
+
88
+ # Example images at the bottom of the page
89
+ with gr.Row():
90
+ examples = gr.Examples(
91
+ examples=[
92
+ f'assets/example_image/{image}'
93
+ for image in os.listdir("assets/example_image")
94
+ ],
95
+ inputs=[image_prompt],
96
+ fn=lambda image: (preprocess_image(image), gr.Button(interactive=True)),
97
+ outputs=[image_prompt, generate_btn],
98
+ run_on_click=True,
99
+ examples_per_page=64,
100
+ )
101
+
102
+ model = gr.State()
103
+
104
+ # Handlers
105
+ image_prompt.upload(
106
+ preprocess_image,
107
+ inputs=[image_prompt],
108
+ outputs=[image_prompt],
109
+ ).then(
110
+ activate_button,
111
+ outputs=[generate_btn],
112
+ )
113
+
114
+ image_prompt.clear(
115
+ deactivate_button,
116
+ outputs=[generate_btn],
117
+ )
118
+
119
+ generate_btn.click(
120
+ image_to_3d,
121
+ inputs=[image_prompt],
122
+ outputs=[model, video_output],
123
+ ).then(
124
+ activate_button,
125
+ outputs=[extract_glb_btn],
126
+ )
127
+
128
+ video_output.clear(
129
+ deactivate_button,
130
+ outputs=[extract_glb_btn],
131
+ )
132
+
133
+ extract_glb_btn.click(
134
+ extract_glb,
135
+ inputs=[model, mesh_simplify, texture_size],
136
+ outputs=[model_output, download_glb],
137
+ ).then(
138
+ activate_button,
139
+ outputs=[download_glb],
140
+ )
141
+
142
+ model_output.clear(
143
+ deactivate_button,
144
+ outputs=[download_glb],
145
+ )
146
+
147
+
148
+ # Launch the Gradio app
149
+ if __name__ == "__main__":
150
+ pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
151
+ pipeline.cuda()
152
+ demo.launch()
assets/example_image/T.png ADDED
assets/example_image/typical_building_building.png ADDED
assets/example_image/typical_building_castle.png ADDED
assets/example_image/typical_building_colorful_cottage.png ADDED
assets/example_image/typical_building_maya_pyramid.png ADDED
assets/example_image/typical_building_mushroom.png ADDED
assets/example_image/typical_building_space_station.png ADDED
assets/example_image/typical_creature_dragon.png ADDED
assets/example_image/typical_creature_elephant.png ADDED
assets/example_image/typical_creature_furry.png ADDED
assets/example_image/typical_creature_quadruped.png ADDED
assets/example_image/typical_creature_robot_crab.png ADDED
assets/example_image/typical_creature_robot_dinosour.png ADDED
assets/example_image/typical_creature_rock_monster.png ADDED
assets/example_image/typical_humanoid_block_robot.png ADDED
assets/example_image/typical_humanoid_dragonborn.png ADDED
assets/example_image/typical_humanoid_dwarf.png ADDED
assets/example_image/typical_humanoid_goblin.png ADDED
assets/example_image/typical_humanoid_mech.png ADDED
assets/example_image/typical_misc_crate.png ADDED
assets/example_image/typical_misc_fireplace.png ADDED
assets/example_image/typical_misc_gate.png ADDED
assets/example_image/typical_misc_lantern.png ADDED
assets/example_image/typical_misc_magicbook.png ADDED
assets/example_image/typical_misc_mailbox.png ADDED
assets/example_image/typical_misc_monster_chest.png ADDED
assets/example_image/typical_misc_paper_machine.png ADDED
assets/example_image/typical_misc_phonograph.png ADDED
assets/example_image/typical_misc_portal2.png ADDED
assets/example_image/typical_misc_storage_chest.png ADDED
assets/example_image/typical_misc_telephone.png ADDED
assets/example_image/typical_misc_television.png ADDED
assets/example_image/typical_misc_workbench.png ADDED
assets/example_image/typical_vehicle_biplane.png ADDED
assets/example_image/typical_vehicle_bulldozer.png ADDED
assets/example_image/typical_vehicle_cart.png ADDED
assets/example_image/typical_vehicle_excavator.png ADDED
assets/example_image/typical_vehicle_helicopter.png ADDED
assets/example_image/typical_vehicle_locomotive.png ADDED
assets/example_image/typical_vehicle_pirate_ship.png ADDED
assets/example_image/weatherworn_misc_paper_machine3.png ADDED
requirements.txt ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+ --find-links https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.4.0_cu121.html
3
+
4
+
5
+ torch==2.4.0
6
+ torchvision==0.19.0
7
+ pillow==10.4.0
8
+ imageio==2.36.1
9
+ imageio-ffmpeg==0.5.1
10
+ tqdm==4.67.1
11
+ easydict==1.13
12
+ opencv-python-headless==4.10.0.84
13
+ scipy==1.14.1
14
+ rembg==2.0.60
15
+ onnxruntime==1.20.1
16
+ trimesh==4.5.3
17
+ xatlas==0.0.9
18
+ pyvista==0.44.2
19
+ pymeshfix==0.17.0
20
+ igraph==0.11.8
21
+ git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
22
+ xformers==0.0.27.post2+cu118
23
+ flash-attn==2.7.0.post2
24
+ kaolin==0.17.0
25
+ spconv-cu118==2.3.6
26
+ transformers==4.46.3
27
+ wheels/nvdiffrast-0.3.3-py3-none-any.whl
28
+ wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl
trellis/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from . import models
2
+ from . import modules
3
+ from . import pipelines
4
+ from . import renderers
5
+ from . import representations
6
+ from . import utils
trellis/models/__init__.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+
3
+ __attributes = {
4
+ 'SparseStructureEncoder': 'sparse_structure_vae',
5
+ 'SparseStructureDecoder': 'sparse_structure_vae',
6
+ 'SparseStructureFlowModel': 'sparse_structure_flow',
7
+ 'SLatEncoder': 'structured_latent_vae',
8
+ 'SLatGaussianDecoder': 'structured_latent_vae',
9
+ 'SLatRadianceFieldDecoder': 'structured_latent_vae',
10
+ 'SLatMeshDecoder': 'structured_latent_vae',
11
+ 'SLatFlowModel': 'structured_latent_flow',
12
+ }
13
+
14
+ __submodules = []
15
+
16
+ __all__ = list(__attributes.keys()) + __submodules
17
+
18
+ def __getattr__(name):
19
+ if name not in globals():
20
+ if name in __attributes:
21
+ module_name = __attributes[name]
22
+ module = importlib.import_module(f".{module_name}", __name__)
23
+ globals()[name] = getattr(module, name)
24
+ elif name in __submodules:
25
+ module = importlib.import_module(f".{name}", __name__)
26
+ globals()[name] = module
27
+ else:
28
+ raise AttributeError(f"module {__name__} has no attribute {name}")
29
+ return globals()[name]
30
+
31
+
32
+ def from_pretrained(path: str, **kwargs):
33
+ """
34
+ Load a model from a pretrained checkpoint.
35
+
36
+ Args:
37
+ path: The path to the checkpoint. Can be either local path or a Hugging Face model name.
38
+ NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively.
39
+ **kwargs: Additional arguments for the model constructor.
40
+ """
41
+ import os
42
+ import json
43
+ from safetensors.torch import load_file
44
+ is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
45
+
46
+ if is_local:
47
+ config_file = f"{path}.json"
48
+ model_file = f"{path}.safetensors"
49
+ else:
50
+ from huggingface_hub import hf_hub_download
51
+ path_parts = path.split('/')
52
+ repo_id = f'{path_parts[0]}/{path_parts[1]}'
53
+ model_name = '/'.join(path_parts[2:])
54
+ config_file = hf_hub_download(repo_id, f"{model_name}.json")
55
+ model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
56
+
57
+ with open(config_file, 'r') as f:
58
+ config = json.load(f)
59
+ model = __getattr__(config['name'])(**config['args'], **kwargs)
60
+ model.load_state_dict(load_file(model_file))
61
+
62
+ return model
63
+
64
+
65
+ # For Pylance
66
+ if __name__ == '__main__':
67
+ from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
68
+ from .sparse_structure_flow import SparseStructureFlowModel
69
+ from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder
70
+ from .structured_latent_flow import SLatFlowModel
trellis/models/sparse_structure_flow.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import numpy as np
6
+ from ..modules.utils import convert_module_to_f16, convert_module_to_f32
7
+ from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
8
+ from ..modules.spatial import patchify, unpatchify
9
+
10
+
11
+ class TimestepEmbedder(nn.Module):
12
+ """
13
+ Embeds scalar timesteps into vector representations.
14
+ """
15
+ def __init__(self, hidden_size, frequency_embedding_size=256):
16
+ super().__init__()
17
+ self.mlp = nn.Sequential(
18
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
19
+ nn.SiLU(),
20
+ nn.Linear(hidden_size, hidden_size, bias=True),
21
+ )
22
+ self.frequency_embedding_size = frequency_embedding_size
23
+
24
+ @staticmethod
25
+ def timestep_embedding(t, dim, max_period=10000):
26
+ """
27
+ Create sinusoidal timestep embeddings.
28
+
29
+ Args:
30
+ t: a 1-D Tensor of N indices, one per batch element.
31
+ These may be fractional.
32
+ dim: the dimension of the output.
33
+ max_period: controls the minimum frequency of the embeddings.
34
+
35
+ Returns:
36
+ an (N, D) Tensor of positional embeddings.
37
+ """
38
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
39
+ half = dim // 2
40
+ freqs = torch.exp(
41
+ -np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
42
+ ).to(device=t.device)
43
+ args = t[:, None].float() * freqs[None]
44
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
45
+ if dim % 2:
46
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
47
+ return embedding
48
+
49
+ def forward(self, t):
50
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
51
+ t_emb = self.mlp(t_freq)
52
+ return t_emb
53
+
54
+
55
+ class SparseStructureFlowModel(nn.Module):
56
+ def __init__(
57
+ self,
58
+ resolution: int,
59
+ in_channels: int,
60
+ model_channels: int,
61
+ cond_channels: int,
62
+ out_channels: int,
63
+ num_blocks: int,
64
+ num_heads: Optional[int] = None,
65
+ num_head_channels: Optional[int] = 64,
66
+ mlp_ratio: float = 4,
67
+ patch_size: int = 2,
68
+ pe_mode: Literal["ape", "rope"] = "ape",
69
+ use_fp16: bool = False,
70
+ use_checkpoint: bool = False,
71
+ share_mod: bool = False,
72
+ qk_rms_norm: bool = False,
73
+ qk_rms_norm_cross: bool = False,
74
+ ):
75
+ super().__init__()
76
+ self.resolution = resolution
77
+ self.in_channels = in_channels
78
+ self.model_channels = model_channels
79
+ self.cond_channels = cond_channels
80
+ self.out_channels = out_channels
81
+ self.num_blocks = num_blocks
82
+ self.num_heads = num_heads or model_channels // num_head_channels
83
+ self.mlp_ratio = mlp_ratio
84
+ self.patch_size = patch_size
85
+ self.pe_mode = pe_mode
86
+ self.use_fp16 = use_fp16
87
+ self.use_checkpoint = use_checkpoint
88
+ self.share_mod = share_mod
89
+ self.qk_rms_norm = qk_rms_norm
90
+ self.qk_rms_norm_cross = qk_rms_norm_cross
91
+ self.dtype = torch.float16 if use_fp16 else torch.float32
92
+
93
+ self.t_embedder = TimestepEmbedder(model_channels)
94
+ if share_mod:
95
+ self.adaLN_modulation = nn.Sequential(
96
+ nn.SiLU(),
97
+ nn.Linear(model_channels, 6 * model_channels, bias=True)
98
+ )
99
+
100
+ if pe_mode == "ape":
101
+ pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
102
+ coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
103
+ coords = torch.stack(coords, dim=-1).reshape(-1, 3)
104
+ pos_emb = pos_embedder(coords)
105
+ self.register_buffer("pos_emb", pos_emb)
106
+
107
+ self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
108
+
109
+ self.blocks = nn.ModuleList([
110
+ ModulatedTransformerCrossBlock(
111
+ model_channels,
112
+ cond_channels,
113
+ num_heads=self.num_heads,
114
+ mlp_ratio=self.mlp_ratio,
115
+ attn_mode='full',
116
+ use_checkpoint=self.use_checkpoint,
117
+ use_rope=(pe_mode == "rope"),
118
+ share_mod=share_mod,
119
+ qk_rms_norm=self.qk_rms_norm,
120
+ qk_rms_norm_cross=self.qk_rms_norm_cross,
121
+ )
122
+ for _ in range(num_blocks)
123
+ ])
124
+
125
+ self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
126
+
127
+ self.initialize_weights()
128
+ if use_fp16:
129
+ self.convert_to_fp16()
130
+
131
+ @property
132
+ def device(self) -> torch.device:
133
+ """
134
+ Return the device of the model.
135
+ """
136
+ return next(self.parameters()).device
137
+
138
+ def convert_to_fp16(self) -> None:
139
+ """
140
+ Convert the torso of the model to float16.
141
+ """
142
+ self.blocks.apply(convert_module_to_f16)
143
+
144
+ def convert_to_fp32(self) -> None:
145
+ """
146
+ Convert the torso of the model to float32.
147
+ """
148
+ self.blocks.apply(convert_module_to_f32)
149
+
150
+ def initialize_weights(self) -> None:
151
+ # Initialize transformer layers:
152
+ def _basic_init(module):
153
+ if isinstance(module, nn.Linear):
154
+ torch.nn.init.xavier_uniform_(module.weight)
155
+ if module.bias is not None:
156
+ nn.init.constant_(module.bias, 0)
157
+ self.apply(_basic_init)
158
+
159
+ # Initialize timestep embedding MLP:
160
+ nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
161
+ nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
162
+
163
+ # Zero-out adaLN modulation layers in DiT blocks:
164
+ if self.share_mod:
165
+ nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
166
+ nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
167
+ else:
168
+ for block in self.blocks:
169
+ nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
170
+ nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
171
+
172
+ # Zero-out output layers:
173
+ nn.init.constant_(self.out_layer.weight, 0)
174
+ nn.init.constant_(self.out_layer.bias, 0)
175
+
176
+ def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
177
+ assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
178
+ f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
179
+
180
+ h = patchify(x, self.patch_size)
181
+ h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
182
+
183
+ h = self.input_layer(h)
184
+ h = h + self.pos_emb[None]
185
+ t_emb = self.t_embedder(t)
186
+ if self.share_mod:
187
+ t_emb = self.adaLN_modulation(t_emb)
188
+ t_emb = t_emb.type(self.dtype)
189
+ h = h.type(self.dtype)
190
+ cond = cond.type(self.dtype)
191
+ for block in self.blocks:
192
+ h = block(h, t_emb, cond)
193
+ h = h.type(x.dtype)
194
+ h = F.layer_norm(h, h.shape[-1:])
195
+ h = self.out_layer(h)
196
+
197
+ h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
198
+ h = unpatchify(h, self.patch_size).contiguous()
199
+
200
+ return h
trellis/models/sparse_structure_vae.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from ..modules.norm import GroupNorm32, ChannelLayerNorm32
6
+ from ..modules.spatial import pixel_shuffle_3d
7
+ from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
8
+
9
+
10
+ def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module:
11
+ """
12
+ Return a normalization layer.
13
+ """
14
+ if norm_type == "group":
15
+ return GroupNorm32(32, *args, **kwargs)
16
+ elif norm_type == "layer":
17
+ return ChannelLayerNorm32(*args, **kwargs)
18
+ else:
19
+ raise ValueError(f"Invalid norm type {norm_type}")
20
+
21
+
22
+ class ResBlock3d(nn.Module):
23
+ def __init__(
24
+ self,
25
+ channels: int,
26
+ out_channels: Optional[int] = None,
27
+ norm_type: Literal["group", "layer"] = "layer",
28
+ ):
29
+ super().__init__()
30
+ self.channels = channels
31
+ self.out_channels = out_channels or channels
32
+
33
+ self.norm1 = norm_layer(norm_type, channels)
34
+ self.norm2 = norm_layer(norm_type, self.out_channels)
35
+ self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
36
+ self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1))
37
+ self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity()
38
+
39
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
40
+ h = self.norm1(x)
41
+ h = F.silu(h)
42
+ h = self.conv1(h)
43
+ h = self.norm2(h)
44
+ h = F.silu(h)
45
+ h = self.conv2(h)
46
+ h = h + self.skip_connection(x)
47
+ return h
48
+
49
+
50
+ class DownsampleBlock3d(nn.Module):
51
+ def __init__(
52
+ self,
53
+ in_channels: int,
54
+ out_channels: int,
55
+ mode: Literal["conv", "avgpool"] = "conv",
56
+ ):
57
+ assert mode in ["conv", "avgpool"], f"Invalid mode {mode}"
58
+
59
+ super().__init__()
60
+ self.in_channels = in_channels
61
+ self.out_channels = out_channels
62
+
63
+ if mode == "conv":
64
+ self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
65
+ elif mode == "avgpool":
66
+ assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels"
67
+
68
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
69
+ if hasattr(self, "conv"):
70
+ return self.conv(x)
71
+ else:
72
+ return F.avg_pool3d(x, 2)
73
+
74
+
75
+ class UpsampleBlock3d(nn.Module):
76
+ def __init__(
77
+ self,
78
+ in_channels: int,
79
+ out_channels: int,
80
+ mode: Literal["conv", "nearest"] = "conv",
81
+ ):
82
+ assert mode in ["conv", "nearest"], f"Invalid mode {mode}"
83
+
84
+ super().__init__()
85
+ self.in_channels = in_channels
86
+ self.out_channels = out_channels
87
+
88
+ if mode == "conv":
89
+ self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1)
90
+ elif mode == "nearest":
91
+ assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels"
92
+
93
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
94
+ if hasattr(self, "conv"):
95
+ x = self.conv(x)
96
+ return pixel_shuffle_3d(x, 2)
97
+ else:
98
+ return F.interpolate(x, scale_factor=2, mode="nearest")
99
+
100
+
101
+ class SparseStructureEncoder(nn.Module):
102
+ """
103
+ Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
104
+
105
+ Args:
106
+ in_channels (int): Channels of the input.
107
+ latent_channels (int): Channels of the latent representation.
108
+ num_res_blocks (int): Number of residual blocks at each resolution.
109
+ channels (List[int]): Channels of the encoder blocks.
110
+ num_res_blocks_middle (int): Number of residual blocks in the middle.
111
+ norm_type (Literal["group", "layer"]): Type of normalization layer.
112
+ use_fp16 (bool): Whether to use FP16.
113
+ """
114
+ def __init__(
115
+ self,
116
+ in_channels: int,
117
+ latent_channels: int,
118
+ num_res_blocks: int,
119
+ channels: List[int],
120
+ num_res_blocks_middle: int = 2,
121
+ norm_type: Literal["group", "layer"] = "layer",
122
+ use_fp16: bool = False,
123
+ ):
124
+ super().__init__()
125
+ self.in_channels = in_channels
126
+ self.latent_channels = latent_channels
127
+ self.num_res_blocks = num_res_blocks
128
+ self.channels = channels
129
+ self.num_res_blocks_middle = num_res_blocks_middle
130
+ self.norm_type = norm_type
131
+ self.use_fp16 = use_fp16
132
+ self.dtype = torch.float16 if use_fp16 else torch.float32
133
+
134
+ self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1)
135
+
136
+ self.blocks = nn.ModuleList([])
137
+ for i, ch in enumerate(channels):
138
+ self.blocks.extend([
139
+ ResBlock3d(ch, ch)
140
+ for _ in range(num_res_blocks)
141
+ ])
142
+ if i < len(channels) - 1:
143
+ self.blocks.append(
144
+ DownsampleBlock3d(ch, channels[i+1])
145
+ )
146
+
147
+ self.middle_block = nn.Sequential(*[
148
+ ResBlock3d(channels[-1], channels[-1])
149
+ for _ in range(num_res_blocks_middle)
150
+ ])
151
+
152
+ self.out_layer = nn.Sequential(
153
+ norm_layer(norm_type, channels[-1]),
154
+ nn.SiLU(),
155
+ nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1)
156
+ )
157
+
158
+ if use_fp16:
159
+ self.convert_to_fp16()
160
+
161
+ @property
162
+ def device(self) -> torch.device:
163
+ """
164
+ Return the device of the model.
165
+ """
166
+ return next(self.parameters()).device
167
+
168
+ def convert_to_fp16(self) -> None:
169
+ """
170
+ Convert the torso of the model to float16.
171
+ """
172
+ self.use_fp16 = True
173
+ self.dtype = torch.float16
174
+ self.blocks.apply(convert_module_to_f16)
175
+ self.middle_block.apply(convert_module_to_f16)
176
+
177
+ def convert_to_fp32(self) -> None:
178
+ """
179
+ Convert the torso of the model to float32.
180
+ """
181
+ self.use_fp16 = False
182
+ self.dtype = torch.float32
183
+ self.blocks.apply(convert_module_to_f32)
184
+ self.middle_block.apply(convert_module_to_f32)
185
+
186
+ def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor:
187
+ h = self.input_layer(x)
188
+ h = h.type(self.dtype)
189
+
190
+ for block in self.blocks:
191
+ h = block(h)
192
+ h = self.middle_block(h)
193
+
194
+ h = h.type(x.dtype)
195
+ h = self.out_layer(h)
196
+
197
+ mean, logvar = h.chunk(2, dim=1)
198
+
199
+ if sample_posterior:
200
+ std = torch.exp(0.5 * logvar)
201
+ z = mean + std * torch.randn_like(std)
202
+ else:
203
+ z = mean
204
+
205
+ if return_raw:
206
+ return z, mean, logvar
207
+ return z
208
+
209
+
210
+ class SparseStructureDecoder(nn.Module):
211
+ """
212
+ Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
213
+
214
+ Args:
215
+ out_channels (int): Channels of the output.
216
+ latent_channels (int): Channels of the latent representation.
217
+ num_res_blocks (int): Number of residual blocks at each resolution.
218
+ channels (List[int]): Channels of the decoder blocks.
219
+ num_res_blocks_middle (int): Number of residual blocks in the middle.
220
+ norm_type (Literal["group", "layer"]): Type of normalization layer.
221
+ use_fp16 (bool): Whether to use FP16.
222
+ """
223
+ def __init__(
224
+ self,
225
+ out_channels: int,
226
+ latent_channels: int,
227
+ num_res_blocks: int,
228
+ channels: List[int],
229
+ num_res_blocks_middle: int = 2,
230
+ norm_type: Literal["group", "layer"] = "layer",
231
+ use_fp16: bool = False,
232
+ ):
233
+ super().__init__()
234
+ self.out_channels = out_channels
235
+ self.latent_channels = latent_channels
236
+ self.num_res_blocks = num_res_blocks
237
+ self.channels = channels
238
+ self.num_res_blocks_middle = num_res_blocks_middle
239
+ self.norm_type = norm_type
240
+ self.use_fp16 = use_fp16
241
+ self.dtype = torch.float16 if use_fp16 else torch.float32
242
+
243
+ self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
244
+
245
+ self.middle_block = nn.Sequential(*[
246
+ ResBlock3d(channels[0], channels[0])
247
+ for _ in range(num_res_blocks_middle)
248
+ ])
249
+
250
+ self.blocks = nn.ModuleList([])
251
+ for i, ch in enumerate(channels):
252
+ self.blocks.extend([
253
+ ResBlock3d(ch, ch)
254
+ for _ in range(num_res_blocks)
255
+ ])
256
+ if i < len(channels) - 1:
257
+ self.blocks.append(
258
+ UpsampleBlock3d(ch, channels[i+1])
259
+ )
260
+
261
+ self.out_layer = nn.Sequential(
262
+ norm_layer(norm_type, channels[-1]),
263
+ nn.SiLU(),
264
+ nn.Conv3d(channels[-1], out_channels, 3, padding=1)
265
+ )
266
+
267
+ if use_fp16:
268
+ self.convert_to_fp16()
269
+
270
+ @property
271
+ def device(self) -> torch.device:
272
+ """
273
+ Return the device of the model.
274
+ """
275
+ return next(self.parameters()).device
276
+
277
+ def convert_to_fp16(self) -> None:
278
+ """
279
+ Convert the torso of the model to float16.
280
+ """
281
+ self.use_fp16 = True
282
+ self.dtype = torch.float16
283
+ self.blocks.apply(convert_module_to_f16)
284
+ self.middle_block.apply(convert_module_to_f16)
285
+
286
+ def convert_to_fp32(self) -> None:
287
+ """
288
+ Convert the torso of the model to float32.
289
+ """
290
+ self.use_fp16 = False
291
+ self.dtype = torch.float32
292
+ self.blocks.apply(convert_module_to_f32)
293
+ self.middle_block.apply(convert_module_to_f32)
294
+
295
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
296
+ h = self.input_layer(x)
297
+
298
+ h = h.type(self.dtype)
299
+
300
+ h = self.middle_block(h)
301
+ for block in self.blocks:
302
+ h = block(h)
303
+
304
+ h = h.type(x.dtype)
305
+ h = self.out_layer(h)
306
+ return h
trellis/models/structured_latent_flow.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import numpy as np
6
+ from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
7
+ from ..modules.transformer import AbsolutePositionEmbedder
8
+ from ..modules.norm import LayerNorm32
9
+ from ..modules import sparse as sp
10
+ from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
11
+ from .sparse_structure_flow import TimestepEmbedder
12
+
13
+
14
+ class SparseResBlock3d(nn.Module):
15
+ def __init__(
16
+ self,
17
+ channels: int,
18
+ emb_channels: int,
19
+ out_channels: Optional[int] = None,
20
+ downsample: bool = False,
21
+ upsample: bool = False,
22
+ ):
23
+ super().__init__()
24
+ self.channels = channels
25
+ self.emb_channels = emb_channels
26
+ self.out_channels = out_channels or channels
27
+ self.downsample = downsample
28
+ self.upsample = upsample
29
+
30
+ assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
31
+
32
+ self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
33
+ self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
34
+ self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
35
+ self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
36
+ self.emb_layers = nn.Sequential(
37
+ nn.SiLU(),
38
+ nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
39
+ )
40
+ self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
41
+ self.updown = None
42
+ if self.downsample:
43
+ self.updown = sp.SparseDownsample(2)
44
+ elif self.upsample:
45
+ self.updown = sp.SparseUpsample(2)
46
+
47
+ def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
48
+ if self.updown is not None:
49
+ x = self.updown(x)
50
+ return x
51
+
52
+ def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
53
+ emb_out = self.emb_layers(emb).type(x.dtype)
54
+ scale, shift = torch.chunk(emb_out, 2, dim=1)
55
+
56
+ x = self._updown(x)
57
+ h = x.replace(self.norm1(x.feats))
58
+ h = h.replace(F.silu(h.feats))
59
+ h = self.conv1(h)
60
+ h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
61
+ h = h.replace(F.silu(h.feats))
62
+ h = self.conv2(h)
63
+ h = h + self.skip_connection(x)
64
+
65
+ return h
66
+
67
+
68
+ class SLatFlowModel(nn.Module):
69
+ def __init__(
70
+ self,
71
+ resolution: int,
72
+ in_channels: int,
73
+ model_channels: int,
74
+ cond_channels: int,
75
+ out_channels: int,
76
+ num_blocks: int,
77
+ num_heads: Optional[int] = None,
78
+ num_head_channels: Optional[int] = 64,
79
+ mlp_ratio: float = 4,
80
+ patch_size: int = 2,
81
+ num_io_res_blocks: int = 2,
82
+ io_block_channels: List[int] = None,
83
+ pe_mode: Literal["ape", "rope"] = "ape",
84
+ use_fp16: bool = False,
85
+ use_checkpoint: bool = False,
86
+ use_skip_connection: bool = True,
87
+ share_mod: bool = False,
88
+ qk_rms_norm: bool = False,
89
+ qk_rms_norm_cross: bool = False,
90
+ ):
91
+ super().__init__()
92
+ self.resolution = resolution
93
+ self.in_channels = in_channels
94
+ self.model_channels = model_channels
95
+ self.cond_channels = cond_channels
96
+ self.out_channels = out_channels
97
+ self.num_blocks = num_blocks
98
+ self.num_heads = num_heads or model_channels // num_head_channels
99
+ self.mlp_ratio = mlp_ratio
100
+ self.patch_size = patch_size
101
+ self.num_io_res_blocks = num_io_res_blocks
102
+ self.io_block_channels = io_block_channels
103
+ self.pe_mode = pe_mode
104
+ self.use_fp16 = use_fp16
105
+ self.use_checkpoint = use_checkpoint
106
+ self.use_skip_connection = use_skip_connection
107
+ self.share_mod = share_mod
108
+ self.qk_rms_norm = qk_rms_norm
109
+ self.qk_rms_norm_cross = qk_rms_norm_cross
110
+ self.dtype = torch.float16 if use_fp16 else torch.float32
111
+
112
+ assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
113
+ assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
114
+
115
+ self.t_embedder = TimestepEmbedder(model_channels)
116
+ if share_mod:
117
+ self.adaLN_modulation = nn.Sequential(
118
+ nn.SiLU(),
119
+ nn.Linear(model_channels, 6 * model_channels, bias=True)
120
+ )
121
+
122
+ if pe_mode == "ape":
123
+ self.pos_embedder = AbsolutePositionEmbedder(model_channels)
124
+
125
+ self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
126
+ self.input_blocks = nn.ModuleList([])
127
+ for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
128
+ self.input_blocks.extend([
129
+ SparseResBlock3d(
130
+ chs,
131
+ model_channels,
132
+ out_channels=chs,
133
+ )
134
+ for _ in range(num_io_res_blocks-1)
135
+ ])
136
+ self.input_blocks.append(
137
+ SparseResBlock3d(
138
+ chs,
139
+ model_channels,
140
+ out_channels=next_chs,
141
+ downsample=True,
142
+ )
143
+ )
144
+
145
+ self.blocks = nn.ModuleList([
146
+ ModulatedSparseTransformerCrossBlock(
147
+ model_channels,
148
+ cond_channels,
149
+ num_heads=self.num_heads,
150
+ mlp_ratio=self.mlp_ratio,
151
+ attn_mode='full',
152
+ use_checkpoint=self.use_checkpoint,
153
+ use_rope=(pe_mode == "rope"),
154
+ share_mod=self.share_mod,
155
+ qk_rms_norm=self.qk_rms_norm,
156
+ qk_rms_norm_cross=self.qk_rms_norm_cross,
157
+ )
158
+ for _ in range(num_blocks)
159
+ ])
160
+
161
+ self.out_blocks = nn.ModuleList([])
162
+ for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
163
+ self.out_blocks.append(
164
+ SparseResBlock3d(
165
+ prev_chs * 2 if self.use_skip_connection else prev_chs,
166
+ model_channels,
167
+ out_channels=chs,
168
+ upsample=True,
169
+ )
170
+ )
171
+ self.out_blocks.extend([
172
+ SparseResBlock3d(
173
+ chs * 2 if self.use_skip_connection else chs,
174
+ model_channels,
175
+ out_channels=chs,
176
+ )
177
+ for _ in range(num_io_res_blocks-1)
178
+ ])
179
+ self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
180
+
181
+ self.initialize_weights()
182
+ if use_fp16:
183
+ self.convert_to_fp16()
184
+
185
+ @property
186
+ def device(self) -> torch.device:
187
+ """
188
+ Return the device of the model.
189
+ """
190
+ return next(self.parameters()).device
191
+
192
+ def convert_to_fp16(self) -> None:
193
+ """
194
+ Convert the torso of the model to float16.
195
+ """
196
+ self.input_blocks.apply(convert_module_to_f16)
197
+ self.blocks.apply(convert_module_to_f16)
198
+ self.out_blocks.apply(convert_module_to_f16)
199
+
200
+ def convert_to_fp32(self) -> None:
201
+ """
202
+ Convert the torso of the model to float32.
203
+ """
204
+ self.input_blocks.apply(convert_module_to_f32)
205
+ self.blocks.apply(convert_module_to_f32)
206
+ self.out_blocks.apply(convert_module_to_f32)
207
+
208
+ def initialize_weights(self) -> None:
209
+ # Initialize transformer layers:
210
+ def _basic_init(module):
211
+ if isinstance(module, nn.Linear):
212
+ torch.nn.init.xavier_uniform_(module.weight)
213
+ if module.bias is not None:
214
+ nn.init.constant_(module.bias, 0)
215
+ self.apply(_basic_init)
216
+
217
+ # Initialize timestep embedding MLP:
218
+ nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
219
+ nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
220
+
221
+ # Zero-out adaLN modulation layers in DiT blocks:
222
+ if self.share_mod:
223
+ nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
224
+ nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
225
+ else:
226
+ for block in self.blocks:
227
+ nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
228
+ nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
229
+
230
+ # Zero-out output layers:
231
+ nn.init.constant_(self.out_layer.weight, 0)
232
+ nn.init.constant_(self.out_layer.bias, 0)
233
+
234
+ def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor:
235
+ h = self.input_layer(x).type(self.dtype)
236
+ t_emb = self.t_embedder(t)
237
+ if self.share_mod:
238
+ t_emb = self.adaLN_modulation(t_emb)
239
+ t_emb = t_emb.type(self.dtype)
240
+ cond = cond.type(self.dtype)
241
+
242
+ skips = []
243
+ # pack with input blocks
244
+ for block in self.input_blocks:
245
+ h = block(h, t_emb)
246
+ skips.append(h.feats)
247
+
248
+ if self.pe_mode == "ape":
249
+ h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
250
+ for block in self.blocks:
251
+ h = block(h, t_emb, cond)
252
+
253
+ # unpack with output blocks
254
+ for block, skip in zip(self.out_blocks, reversed(skips)):
255
+ if self.use_skip_connection:
256
+ h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb)
257
+ else:
258
+ h = block(h, t_emb)
259
+
260
+ h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
261
+ h = self.out_layer(h.type(x.dtype))
262
+ return h
trellis/models/structured_latent_vae/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from .encoder import SLatEncoder
2
+ from .decoder_gs import SLatGaussianDecoder
3
+ from .decoder_rf import SLatRadianceFieldDecoder
4
+ from .decoder_mesh import SLatMeshDecoder
trellis/models/structured_latent_vae/base.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import *
2
+ import torch
3
+ import torch.nn as nn
4
+ from ...modules.utils import convert_module_to_f16, convert_module_to_f32
5
+ from ...modules import sparse as sp
6
+ from ...modules.transformer import AbsolutePositionEmbedder
7
+ from ...modules.sparse.transformer import SparseTransformerBlock
8
+
9
+
10
+ def block_attn_config(self):
11
+ """
12
+ Return the attention configuration of the model.
13
+ """
14
+ for i in range(self.num_blocks):
15
+ if self.attn_mode == "shift_window":
16
+ yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
17
+ elif self.attn_mode == "shift_sequence":
18
+ yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
19
+ elif self.attn_mode == "shift_order":
20
+ yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
21
+ elif self.attn_mode == "full":
22
+ yield "full", None, None, None, None
23
+ elif self.attn_mode == "swin":
24
+ yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None
25
+
26
+
27
+ class SparseTransformerBase(nn.Module):
28
+ """
29
+ Sparse Transformer without output layers.
30
+ Serve as the base class for encoder and decoder.
31
+ """
32
+ def __init__(
33
+ self,
34
+ in_channels: int,
35
+ model_channels: int,
36
+ num_blocks: int,
37
+ num_heads: Optional[int] = None,
38
+ num_head_channels: Optional[int] = 64,
39
+ mlp_ratio: float = 4.0,
40
+ attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
41
+ window_size: Optional[int] = None,
42
+ pe_mode: Literal["ape", "rope"] = "ape",
43
+ use_fp16: bool = False,
44
+ use_checkpoint: bool = False,
45
+ qk_rms_norm: bool = False,
46
+ ):
47
+ super().__init__()
48
+ self.in_channels = in_channels
49
+ self.model_channels = model_channels
50
+ self.num_blocks = num_blocks
51
+ self.window_size = window_size
52
+ self.num_heads = num_heads or model_channels // num_head_channels
53
+ self.mlp_ratio = mlp_ratio
54
+ self.attn_mode = attn_mode
55
+ self.pe_mode = pe_mode
56
+ self.use_fp16 = use_fp16
57
+ self.use_checkpoint = use_checkpoint
58
+ self.qk_rms_norm = qk_rms_norm
59
+ self.dtype = torch.float16 if use_fp16 else torch.float32
60
+
61
+ if pe_mode == "ape":
62
+ self.pos_embedder = AbsolutePositionEmbedder(model_channels)
63
+
64
+ self.input_layer = sp.SparseLinear(in_channels, model_channels)
65
+ self.blocks = nn.ModuleList([
66
+ SparseTransformerBlock(
67
+ model_channels,
68
+ num_heads=self.num_heads,
69
+ mlp_ratio=self.mlp_ratio,
70
+ attn_mode=attn_mode,
71
+ window_size=window_size,
72
+ shift_sequence=shift_sequence,
73
+ shift_window=shift_window,
74
+ serialize_mode=serialize_mode,
75
+ use_checkpoint=self.use_checkpoint,
76
+ use_rope=(pe_mode == "rope"),
77
+ qk_rms_norm=self.qk_rms_norm,
78
+ )
79
+ for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
80
+ ])
81
+
82
+ @property
83
+ def device(self) -> torch.device:
84
+ """
85
+ Return the device of the model.
86
+ """
87
+ return next(self.parameters()).device
88
+
89
+ def convert_to_fp16(self) -> None:
90
+ """
91
+ Convert the torso of the model to float16.
92
+ """
93
+ self.blocks.apply(convert_module_to_f16)
94
+
95
+ def convert_to_fp32(self) -> None:
96
+ """
97
+ Convert the torso of the model to float32.
98
+ """
99
+ self.blocks.apply(convert_module_to_f32)
100
+
101
+ def initialize_weights(self) -> None:
102
+ # Initialize transformer layers:
103
+ def _basic_init(module):
104
+ if isinstance(module, nn.Linear):
105
+ torch.nn.init.xavier_uniform_(module.weight)
106
+ if module.bias is not None:
107
+ nn.init.constant_(module.bias, 0)
108
+ self.apply(_basic_init)
109
+
110
+ def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
111
+ h = self.input_layer(x)
112
+ if self.pe_mode == "ape":
113
+ h = h + self.pos_embedder(x.coords[:, 1:])
114
+ h = h.type(self.dtype)
115
+ for block in self.blocks:
116
+ h = block(h)
117
+ return h