from typing import * import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32 from ..modules.transformer import AbsolutePositionEmbedder from ..modules.norm import LayerNorm32 from ..modules import sparse as sp from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock from .sparse_structure_flow import TimestepEmbedder class SparseResBlock3d(nn.Module): def __init__( self, channels: int, emb_channels: int, out_channels: Optional[int] = None, downsample: bool = False, upsample: bool = False, ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.out_channels = out_channels or channels self.downsample = downsample self.upsample = upsample assert not (downsample and upsample), "Cannot downsample and upsample at the same time" self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6) self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6) self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3) self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3)) self.emb_layers = nn.Sequential( nn.SiLU(), nn.Linear(emb_channels, 2 * self.out_channels, bias=True), ) self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity() self.updown = None if self.downsample: self.updown = sp.SparseDownsample(2) elif self.upsample: self.updown = sp.SparseUpsample(2) def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor: if self.updown is not None: x = self.updown(x) return x def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor: emb_out = self.emb_layers(emb).type(x.dtype) scale, shift = torch.chunk(emb_out, 2, dim=1) x = self._updown(x) h = x.replace(self.norm1(x.feats)) h = h.replace(F.silu(h.feats)) h = self.conv1(h) h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift h = h.replace(F.silu(h.feats)) h = self.conv2(h) h = h + self.skip_connection(x) return h class SLatFlowModel(nn.Module): def __init__( self, resolution: int, in_channels: int, model_channels: int, cond_channels: int, out_channels: int, num_blocks: int, num_heads: Optional[int] = None, num_head_channels: Optional[int] = 64, mlp_ratio: float = 4, patch_size: int = 2, num_io_res_blocks: int = 2, io_block_channels: List[int] = None, pe_mode: Literal["ape", "rope"] = "ape", use_fp16: bool = False, use_checkpoint: bool = False, use_skip_connection: bool = True, share_mod: bool = False, qk_rms_norm: bool = False, qk_rms_norm_cross: bool = False, ): super().__init__() self.resolution = resolution self.in_channels = in_channels self.model_channels = model_channels self.cond_channels = cond_channels self.out_channels = out_channels self.num_blocks = num_blocks self.num_heads = num_heads or model_channels // num_head_channels self.mlp_ratio = mlp_ratio self.patch_size = patch_size self.num_io_res_blocks = num_io_res_blocks self.io_block_channels = io_block_channels self.pe_mode = pe_mode self.use_fp16 = use_fp16 self.use_checkpoint = use_checkpoint self.use_skip_connection = use_skip_connection self.share_mod = share_mod self.qk_rms_norm = qk_rms_norm self.qk_rms_norm_cross = qk_rms_norm_cross self.dtype = torch.float16 if use_fp16 else torch.float32 assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2" assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages" self.t_embedder = TimestepEmbedder(model_channels) if share_mod: self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(model_channels, 6 * model_channels, bias=True) ) if pe_mode == "ape": self.pos_embedder = AbsolutePositionEmbedder(model_channels) self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0]) self.input_blocks = nn.ModuleList([]) for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]): self.input_blocks.extend([ SparseResBlock3d( chs, model_channels, out_channels=chs, ) for _ in range(num_io_res_blocks-1) ]) self.input_blocks.append( SparseResBlock3d( chs, model_channels, out_channels=next_chs, downsample=True, ) ) self.blocks = nn.ModuleList([ ModulatedSparseTransformerCrossBlock( model_channels, cond_channels, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, attn_mode='full', use_checkpoint=self.use_checkpoint, use_rope=(pe_mode == "rope"), share_mod=self.share_mod, qk_rms_norm=self.qk_rms_norm, qk_rms_norm_cross=self.qk_rms_norm_cross, ) for _ in range(num_blocks) ]) self.out_blocks = nn.ModuleList([]) for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))): self.out_blocks.append( SparseResBlock3d( prev_chs * 2 if self.use_skip_connection else prev_chs, model_channels, out_channels=chs, upsample=True, ) ) self.out_blocks.extend([ SparseResBlock3d( chs * 2 if self.use_skip_connection else chs, model_channels, out_channels=chs, ) for _ in range(num_io_res_blocks-1) ]) self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels) self.initialize_weights() if use_fp16: self.convert_to_fp16() @property def device(self) -> torch.device: """ Return the device of the model. """ return next(self.parameters()).device def convert_to_fp16(self) -> None: """ Convert the torso of the model to float16. """ self.input_blocks.apply(convert_module_to_f16) self.blocks.apply(convert_module_to_f16) self.out_blocks.apply(convert_module_to_f16) def convert_to_fp32(self) -> None: """ Convert the torso of the model to float32. """ self.input_blocks.apply(convert_module_to_f32) self.blocks.apply(convert_module_to_f32) self.out_blocks.apply(convert_module_to_f32) def initialize_weights(self) -> None: # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: if self.share_mod: nn.init.constant_(self.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.adaLN_modulation[-1].bias, 0) else: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.out_layer.weight, 0) nn.init.constant_(self.out_layer.bias, 0) def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor: h = self.input_layer(x).type(self.dtype) t_emb = self.t_embedder(t) if self.share_mod: t_emb = self.adaLN_modulation(t_emb) t_emb = t_emb.type(self.dtype) cond = cond.type(self.dtype) skips = [] # pack with input blocks for block in self.input_blocks: h = block(h, t_emb) skips.append(h.feats) if self.pe_mode == "ape": h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype) for block in self.blocks: h = block(h, t_emb, cond) # unpack with output blocks for block, skip in zip(self.out_blocks, reversed(skips)): if self.use_skip_connection: h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb) else: h = block(h, t_emb) h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) h = self.out_layer(h.type(x.dtype)) return h