from typing import * import torch import torch.nn as nn from ...modules.utils import convert_module_to_f16, convert_module_to_f32 from ...modules import sparse as sp from ...modules.transformer import AbsolutePositionEmbedder from ...modules.sparse.transformer import SparseTransformerBlock def block_attn_config(self): """ Return the attention configuration of the model. """ for i in range(self.num_blocks): if self.attn_mode == "shift_window": yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER elif self.attn_mode == "shift_sequence": yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER elif self.attn_mode == "shift_order": yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4] elif self.attn_mode == "full": yield "full", None, None, None, None elif self.attn_mode == "swin": yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None class SparseTransformerBase(nn.Module): """ Sparse Transformer without output layers. Serve as the base class for encoder and decoder. """ def __init__( self, in_channels: int, model_channels: int, num_blocks: int, num_heads: Optional[int] = None, num_head_channels: Optional[int] = 64, mlp_ratio: float = 4.0, attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", window_size: Optional[int] = None, pe_mode: Literal["ape", "rope"] = "ape", use_fp16: bool = False, use_checkpoint: bool = False, qk_rms_norm: bool = False, ): super().__init__() self.in_channels = in_channels self.model_channels = model_channels self.num_blocks = num_blocks self.window_size = window_size self.num_heads = num_heads or model_channels // num_head_channels self.mlp_ratio = mlp_ratio self.attn_mode = attn_mode self.pe_mode = pe_mode self.use_fp16 = use_fp16 self.use_checkpoint = use_checkpoint self.qk_rms_norm = qk_rms_norm self.dtype = torch.float16 if use_fp16 else torch.float32 if pe_mode == "ape": self.pos_embedder = AbsolutePositionEmbedder(model_channels) self.input_layer = sp.SparseLinear(in_channels, model_channels) self.blocks = nn.ModuleList([ SparseTransformerBlock( model_channels, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, attn_mode=attn_mode, window_size=window_size, shift_sequence=shift_sequence, shift_window=shift_window, serialize_mode=serialize_mode, use_checkpoint=self.use_checkpoint, use_rope=(pe_mode == "rope"), qk_rms_norm=self.qk_rms_norm, ) for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self) ]) @property def device(self) -> torch.device: """ Return the device of the model. """ return next(self.parameters()).device def convert_to_fp16(self) -> None: """ Convert the torso of the model to float16. """ self.blocks.apply(convert_module_to_f16) def convert_to_fp32(self) -> None: """ Convert the torso of the model to float32. """ self.blocks.apply(convert_module_to_f32) def initialize_weights(self) -> None: # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) def forward(self, x: sp.SparseTensor) -> sp.SparseTensor: h = self.input_layer(x) if self.pe_mode == "ape": h = h + self.pos_embedder(x.coords[:, 1:]) h = h.type(self.dtype) for block in self.blocks: h = block(h) return h