from . import samplers from .trellis_image_to_3d import TrellisImageTo3DPipeline def from_pretrained(path: str): """ Load a pipeline from a model folder or a Hugging Face model hub. Args: path: The path to the model. Can be either local path or a Hugging Face model name. """ import os import json is_local = os.path.exists(f"{path}/pipeline.json") if is_local: config_file = f"{path}/pipeline.json" else: from huggingface_hub import hf_hub_download config_file = hf_hub_download(path, "pipeline.json") with open(config_file, 'r') as f: config = json.load(f) return globals()[config['name']].from_pretrained(path)