from typing import * import torch import torch.nn as nn import torch.nn.functional as F from ...modules import sparse as sp from ...utils.random_utils import hammersley_sequence from .base import SparseTransformerBase from ...representations import Gaussian class SLatGaussianDecoder(SparseTransformerBase): def __init__( self, resolution: int, model_channels: int, latent_channels: int, num_blocks: int, num_heads: Optional[int] = None, num_head_channels: Optional[int] = 64, mlp_ratio: float = 4, attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", window_size: int = 8, pe_mode: Literal["ape", "rope"] = "ape", use_fp16: bool = False, use_checkpoint: bool = False, qk_rms_norm: bool = False, representation_config: dict = None, ): super().__init__( in_channels=latent_channels, model_channels=model_channels, num_blocks=num_blocks, num_heads=num_heads, num_head_channels=num_head_channels, mlp_ratio=mlp_ratio, attn_mode=attn_mode, window_size=window_size, pe_mode=pe_mode, use_fp16=use_fp16, use_checkpoint=use_checkpoint, qk_rms_norm=qk_rms_norm, ) self.resolution = resolution self.rep_config = representation_config self._calc_layout() self.out_layer = sp.SparseLinear(model_channels, self.out_channels) self._build_perturbation() self.initialize_weights() if use_fp16: self.convert_to_fp16() def initialize_weights(self) -> None: super().initialize_weights() # Zero-out output layers: nn.init.constant_(self.out_layer.weight, 0) nn.init.constant_(self.out_layer.bias, 0) def _build_perturbation(self) -> None: perturbation = [hammersley_sequence(3, i, self.rep_config['num_gaussians']) for i in range(self.rep_config['num_gaussians'])] perturbation = torch.tensor(perturbation).float() * 2 - 1 perturbation = perturbation / self.rep_config['voxel_size'] perturbation = torch.atanh(perturbation).to(self.device) self.register_buffer('offset_perturbation', perturbation) def _calc_layout(self) -> None: self.layout = { '_xyz' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3}, '_features_dc' : {'shape': (self.rep_config['num_gaussians'], 1, 3), 'size': self.rep_config['num_gaussians'] * 3}, '_scaling' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3}, '_rotation' : {'shape': (self.rep_config['num_gaussians'], 4), 'size': self.rep_config['num_gaussians'] * 4}, '_opacity' : {'shape': (self.rep_config['num_gaussians'], 1), 'size': self.rep_config['num_gaussians']}, } start = 0 for k, v in self.layout.items(): v['range'] = (start, start + v['size']) start += v['size'] self.out_channels = start def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]: """ Convert a batch of network outputs to 3D representations. Args: x: The [N x * x C] sparse tensor output by the network. Returns: list of representations """ ret = [] for i in range(x.shape[0]): representation = Gaussian( sh_degree=0, aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0], mininum_kernel_size = self.rep_config['3d_filter_kernel_size'], scaling_bias = self.rep_config['scaling_bias'], opacity_bias = self.rep_config['opacity_bias'], scaling_activation = self.rep_config['scaling_activation'] ) xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution for k, v in self.layout.items(): if k == '_xyz': offset = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']) offset = offset * self.rep_config['lr'][k] if self.rep_config['perturb_offset']: offset = offset + self.offset_perturbation offset = torch.tanh(offset) / self.resolution * 0.5 * self.rep_config['voxel_size'] _xyz = xyz.unsqueeze(1) + offset setattr(representation, k, _xyz.flatten(0, 1)) else: feats = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']).flatten(0, 1) feats = feats * self.rep_config['lr'][k] setattr(representation, k, feats) ret.append(representation) return ret def forward(self, x: sp.SparseTensor) -> List[Gaussian]: h = super().forward(x) h = h.type(x.dtype) h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) h = self.out_layer(h) return self.to_representation(h)