from typing import * import torch import math from .. import SparseTensor from .. import DEBUG, ATTN if ATTN == 'xformers': import xformers.ops as xops elif ATTN == 'flash_attn': import flash_attn else: raise ValueError(f"Unknown attention module: {ATTN}") __all__ = [ 'sparse_windowed_scaled_dot_product_self_attention', ] def calc_window_partition( tensor: SparseTensor, window_size: Union[int, Tuple[int, ...]], shift_window: Union[int, Tuple[int, ...]] = 0 ) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]: """ Calculate serialization and partitioning for a set of coordinates. Args: tensor (SparseTensor): The input tensor. window_size (int): The window size to use. shift_window (Tuple[int, ...]): The shift of serialized coordinates. Returns: (torch.Tensor): Forwards indices. (torch.Tensor): Backwards indices. (List[int]): Sequence lengths. (List[int]): Sequence batch indices. """ DIM = tensor.coords.shape[1] - 1 shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size shifted_coords = tensor.coords.clone().detach() shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0) MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist() NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)] OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1] shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0) shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1) fwd_indices = torch.argsort(shifted_indices) bwd_indices = torch.empty_like(fwd_indices) bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device) seq_lens = torch.bincount(shifted_indices) seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0] mask = seq_lens != 0 seq_lens = seq_lens[mask].tolist() seq_batch_indices = seq_batch_indices[mask].tolist() return fwd_indices, bwd_indices, seq_lens, seq_batch_indices def sparse_windowed_scaled_dot_product_self_attention( qkv: SparseTensor, window_size: int, shift_window: Tuple[int, int, int] = (0, 0, 0) ) -> SparseTensor: """ Apply windowed scaled dot product self attention to a sparse tensor. Args: qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs. window_size (int): The window size to use. shift_window (Tuple[int, int, int]): The shift of serialized coordinates. shift (int): The shift to use. """ assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]" serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}' serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name) if serialization_spatial_cache is None: fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window) qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices)) else: fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache M = fwd_indices.shape[0] T = qkv.feats.shape[0] H = qkv.feats.shape[2] C = qkv.feats.shape[3] qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C] if DEBUG: start = 0 qkv_coords = qkv.coords[fwd_indices] for i in range(len(seq_lens)): seq_coords = qkv_coords[start:start+seq_lens[i]] assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch" assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \ f"SparseWindowedScaledDotProductSelfAttention: window size exceeded" start += seq_lens[i] if all([seq_len == window_size for seq_len in seq_lens]): B = len(seq_lens) N = window_size qkv_feats = qkv_feats.reshape(B, N, 3, H, C) if ATTN == 'xformers': q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C] out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C] elif ATTN == 'flash_attn': out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C] else: raise ValueError(f"Unknown attention module: {ATTN}") out = out.reshape(B * N, H, C) # [M, H, C] else: if ATTN == 'xformers': q, k, v = qkv_feats.unbind(dim=1) # [M, H, C] q = q.unsqueeze(0) # [1, M, H, C] k = k.unsqueeze(0) # [1, M, H, C] v = v.unsqueeze(0) # [1, M, H, C] mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens) out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C] elif ATTN == 'flash_attn': cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \ .to(qkv.device).int() out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C] out = out[bwd_indices] # [T, H, C] if DEBUG: qkv_coords = qkv_coords[bwd_indices] assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch" return qkv.replace(out)