from typing import * import torch import torch.nn as nn from . import SparseTensor __all__ = [ 'SparseDownsample', 'SparseUpsample', 'SparseSubdivide' ] class SparseDownsample(nn.Module): """ Downsample a sparse tensor by a factor of `factor`. Implemented as average pooling. """ def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]): super(SparseDownsample, self).__init__() self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor def forward(self, input: SparseTensor) -> SparseTensor: DIM = input.coords.shape[-1] - 1 factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.' coord = list(input.coords.unbind(dim=-1)) for i, f in enumerate(factor): coord[i+1] = coord[i+1] // f MAX = [coord[i+1].max().item() + 1 for i in range(DIM)] OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1] code = sum([c * o for c, o in zip(coord, OFFSET)]) code, idx = code.unique(return_inverse=True) new_feats = torch.scatter_reduce( torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype), dim=0, index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]), src=input.feats, reduce='mean' ) new_coords = torch.stack( [code // OFFSET[0]] + [(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)], dim=-1 ) out = SparseTensor(new_feats, new_coords, input.shape,) out._scale = tuple([s // f for s, f in zip(input._scale, factor)]) out._spatial_cache = input._spatial_cache out.register_spatial_cache(f'upsample_{factor}_coords', input.coords) out.register_spatial_cache(f'upsample_{factor}_layout', input.layout) out.register_spatial_cache(f'upsample_{factor}_idx', idx) return out class SparseUpsample(nn.Module): """ Upsample a sparse tensor by a factor of `factor`. Implemented as nearest neighbor interpolation. """ def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]): super(SparseUpsample, self).__init__() self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor def forward(self, input: SparseTensor) -> SparseTensor: DIM = input.coords.shape[-1] - 1 factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.' new_coords = input.get_spatial_cache(f'upsample_{factor}_coords') new_layout = input.get_spatial_cache(f'upsample_{factor}_layout') idx = input.get_spatial_cache(f'upsample_{factor}_idx') if any([x is None for x in [new_coords, new_layout, idx]]): raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.') new_feats = input.feats[idx] out = SparseTensor(new_feats, new_coords, input.shape, new_layout) out._scale = tuple([s * f for s, f in zip(input._scale, factor)]) out._spatial_cache = input._spatial_cache return out class SparseSubdivide(nn.Module): """ Upsample a sparse tensor by a factor of `factor`. Implemented as nearest neighbor interpolation. """ def __init__(self): super(SparseSubdivide, self).__init__() def forward(self, input: SparseTensor) -> SparseTensor: DIM = input.coords.shape[-1] - 1 # upsample scale=2^DIM n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int) n_coords = torch.nonzero(n_cube) n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1) factor = n_coords.shape[0] assert factor == 2 ** DIM # print(n_coords.shape) new_coords = input.coords.clone() new_coords[:, 1:] *= 2 new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype) new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:]) out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape) out._scale = input._scale * 2 out._spatial_cache = input._spatial_cache return out