from typing import * import torch import torch.nn as nn from ..basic import SparseTensor from ..linear import SparseLinear from ..nonlinearity import SparseGELU from ..attention import SparseMultiHeadAttention, SerializeMode from ...norm import LayerNorm32 class SparseFeedForwardNet(nn.Module): def __init__(self, channels: int, mlp_ratio: float = 4.0): super().__init__() self.mlp = nn.Sequential( SparseLinear(channels, int(channels * mlp_ratio)), SparseGELU(approximate="tanh"), SparseLinear(int(channels * mlp_ratio), channels), ) def forward(self, x: SparseTensor) -> SparseTensor: return self.mlp(x) class SparseTransformerBlock(nn.Module): """ Sparse Transformer block (MSA + FFN). """ def __init__( self, channels: int, num_heads: int, mlp_ratio: float = 4.0, attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", window_size: Optional[int] = None, shift_sequence: Optional[int] = None, shift_window: Optional[Tuple[int, int, int]] = None, serialize_mode: Optional[SerializeMode] = None, use_checkpoint: bool = False, use_rope: bool = False, qk_rms_norm: bool = False, qkv_bias: bool = True, ln_affine: bool = False, ): super().__init__() self.use_checkpoint = use_checkpoint self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) self.attn = SparseMultiHeadAttention( channels, num_heads=num_heads, attn_mode=attn_mode, window_size=window_size, shift_sequence=shift_sequence, shift_window=shift_window, serialize_mode=serialize_mode, qkv_bias=qkv_bias, use_rope=use_rope, qk_rms_norm=qk_rms_norm, ) self.mlp = SparseFeedForwardNet( channels, mlp_ratio=mlp_ratio, ) def _forward(self, x: SparseTensor) -> SparseTensor: h = x.replace(self.norm1(x.feats)) h = self.attn(h) x = x + h h = x.replace(self.norm2(x.feats)) h = self.mlp(h) x = x + h return x def forward(self, x: SparseTensor) -> SparseTensor: if self.use_checkpoint: return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False) else: return self._forward(x) class SparseTransformerCrossBlock(nn.Module): """ Sparse Transformer cross-attention block (MSA + MCA + FFN). """ def __init__( self, channels: int, ctx_channels: int, num_heads: int, mlp_ratio: float = 4.0, attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", window_size: Optional[int] = None, shift_sequence: Optional[int] = None, shift_window: Optional[Tuple[int, int, int]] = None, serialize_mode: Optional[SerializeMode] = None, use_checkpoint: bool = False, use_rope: bool = False, qk_rms_norm: bool = False, qk_rms_norm_cross: bool = False, qkv_bias: bool = True, ln_affine: bool = False, ): super().__init__() self.use_checkpoint = use_checkpoint self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) self.self_attn = SparseMultiHeadAttention( channels, num_heads=num_heads, type="self", attn_mode=attn_mode, window_size=window_size, shift_sequence=shift_sequence, shift_window=shift_window, serialize_mode=serialize_mode, qkv_bias=qkv_bias, use_rope=use_rope, qk_rms_norm=qk_rms_norm, ) self.cross_attn = SparseMultiHeadAttention( channels, ctx_channels=ctx_channels, num_heads=num_heads, type="cross", attn_mode="full", qkv_bias=qkv_bias, qk_rms_norm=qk_rms_norm_cross, ) self.mlp = SparseFeedForwardNet( channels, mlp_ratio=mlp_ratio, ) def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor): h = x.replace(self.norm1(x.feats)) h = self.self_attn(h) x = x + h h = x.replace(self.norm2(x.feats)) h = self.cross_attn(h, context) x = x + h h = x.replace(self.norm3(x.feats)) h = self.mlp(h) x = x + h return x def forward(self, x: SparseTensor, context: torch.Tensor): if self.use_checkpoint: return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False) else: return self._forward(x, context)