Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.metrics import ( | |
accuracy_score, | |
precision_score, | |
recall_score, | |
f1_score) | |
from imblearn.metrics import specificity_score | |
import difflib as dl | |
import os | |
# Title and description | |
st.title("Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text") | |
st.markdown("Supplemantary material accompanying the following paper: Jekaterina Novikova (2021).[Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text](https://arxiv.org/abs/2109.11888). \ | |
*In: The 7th Workshop on Noisy User-generated Text at EMNLP*, 2021.", unsafe_allow_html=True) | |
st.image('img/poster2.png') | |
st.write("[Link](https://arxiv.org/abs/2109.11888) to the high-res version of the poster.") | |
# Loading data | |
my_data = "data/df_test_all.csv" | |
def load_data(dataset): | |
df = pd.read_csv(os.path.join(dataset)) | |
return df | |
df = load_data(my_data) | |
# Sidebar to select type and level of perturbation selection menu | |
st.sidebar.title("Selection Menu") | |
st.sidebar.markdown("Please select the type and the level of text perturbation below. <hr>", unsafe_allow_html=True) | |
type = st.sidebar.selectbox('Type of perturbations', ["Original / No perturbations", "Delete filled pauses", "Delete info units", "Back-translation", "Substitute with WordNet synonyms"]) | |
level = None | |
iu_type = None | |
if type in ["Substitute with word2vec", "Substitute with WordNet synonyms"]: | |
level = st.sidebar.slider('Level of perturbations:', min_value = 0.1, max_value = 0.90, step = 0.10) | |
elif type == "Delete info units": | |
iu_type = st.sidebar.radio('Type of info units:', ["Action only", "Location only", "Object only", "Subject only"]) | |
# select column names based on subtype of perturbations: | |
def select_pred_column(type, level = None, iu_type = None): | |
if type == "Original / No perturbations": | |
prediction = "pred_original" | |
elif type == "Delete filled pauses": | |
prediction = "pred_no_filled_pause" | |
elif type == "Delete info units": | |
if iu_type == "Action only": | |
prediction = "pred_no_iu_action" | |
elif iu_type == "Location only": | |
prediction = "pred_no_iu_loc" | |
elif iu_type == "Object only": | |
prediction = "pred_no_iu_obj" | |
elif iu_type == "Subject only": | |
prediction = "pred_no_iu_subj" | |
elif type == "Back-translation": | |
prediction = "pred_back_transl" | |
elif type == "Substitute with word2vec": | |
lvl_str = str(level * 100)[:2] | |
prediction = "pred_w2v_"+lvl_str | |
elif type == "Substitute with WordNet synonyms": | |
lvl_str = str(level * 100)[:2] | |
prediction = "pred_wnet_"+lvl_str | |
return prediction | |
def select_aug_column(type, level = None, iu_type = None): | |
if type == "Original / No perturbations": | |
augmentation = "utterances" | |
elif type == "Delete filled pauses": | |
augmentation = "aug_no_filled_pause" | |
elif type == "Delete info units": | |
if iu_type == "Action only": | |
augmentation = "aug_no_iu_action" | |
elif iu_type == "Location only": | |
augmentation = "aug_no_iu_loc" | |
elif iu_type == "Object only": | |
augmentation = "aug_no_iu_obj" | |
elif iu_type == "Subject only": | |
augmentation = "aug_no_iu_subj" | |
elif type == "Back-translation": | |
augmentation = "aug_back_transl" | |
elif type == "Substitute with word2vec": | |
lvl_str = str(level * 100)[:2] | |
augmentation = "aug_w2v_"+lvl_str | |
elif type == "Substitute with WordNet synonyms": | |
lvl_str = str(level * 100)[:2] | |
augmentation = "aug_wnet_"+lvl_str | |
return augmentation | |
#part I | |
st.header("1. Classification Performance") | |
st.write("The performance of the fine-tuned BERT model tested on the samples of text with applied perturbations, as selected in the Selection Menu.") | |
if st.button("Calculate performance"): | |
acc = accuracy_score(df.label.values, df[select_pred_column(type, level, iu_type)].values) | |
f1 = f1_score(df.label.values, df[select_pred_column(type, level, iu_type)].values) | |
prec = precision_score(df.label.values, df[select_pred_column(type, level, iu_type)].values) | |
rec = recall_score(df.label.values, df[select_pred_column(type, level, iu_type)].values) | |
spec = specificity_score(df.label.values, df[select_pred_column(type, level, iu_type)].values) | |
df_perf = pd.DataFrame([acc, f1, prec, rec, spec]) | |
df_perf.index = ["Accuracy", "F1-score", "Precision", "Recall/Sensitivity", "Specificity"] | |
df_perf.columns = ["Performance"] | |
st.table( df_perf.T) | |
#part II | |
st.header("2. Examples of Text Perturbations") | |
def text_to_code(text): | |
if text == "Healthy Control (label 0)": | |
code = [0] | |
elif text == "Alzheimer's Disease (label 1)": | |
code = [1] | |
else: | |
code = [0,1] | |
return code | |
dx = st.radio('Real disease:', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "both"]) | |
pred1 = st.radio('Original prediction (before text perturbation):', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "Don't care"]) | |
pred2 = st.radio('Prediction after text perturbation:', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "Don't care"]) | |
subject_ids = df[(df["label"].isin(text_to_code(dx))) & \ | |
(df["pred_original"].isin(text_to_code(pred1))) &\ | |
(df[select_pred_column(type, level, iu_type)].isin(text_to_code(pred2)))]["subject_id"] | |
st.write('There are', subject_ids.shape[0], 'text sample(s) that correspond to such a selection.') | |
if subject_ids.shape[0] > 0: | |
subj_choice = st.selectbox("Select a text sample:", subject_ids) | |
df_select = df[df.subject_id == subj_choice][["subject_id", "sex", "age", "label", "pred_original", select_pred_column(type, level, iu_type)]] | |
df_select.age = df_select.age.astype(int) | |
df_select.columns = ["SubjectID", "Sex", "Age", "Real disease label", "Original prediction", "Prediction after perturbation"] | |
st.table(df_select) | |
text_orig = df[df.subject_id == subj_choice]["utterances"].values[0] | |
text_aug = df[df.subject_id == subj_choice][select_aug_column(type, level, iu_type)].values[0] | |
words_aug = set(text_aug.replace("'"," ' ").split()) | |
words_orig = set(text_orig.replace("'"," ' ").split()) | |
s1 = text_orig.replace("'"," ' ").split() | |
s2 = text_aug.replace("'"," ' ").split() | |
seqmatcher = dl.SequenceMatcher(None, s1, s2, autojunk=False) | |
res_orig, res_aug = [], [] | |
for tag, a0, a1, b0, b1 in seqmatcher.get_opcodes(): | |
if tag == "equal": | |
res_orig += s1[a0:a1] | |
res_aug += s2[b0:b1] | |
else: | |
res_orig += ["<span style='color:blue'> <em><b>"+" ".join(s1[a0:a1])+"</b></em></span>"] | |
res_aug += ["<span style='color:red'> <em><b>"+" ".join(s2[b0:b1])+"</b></em></span> "] | |
st.write("**<span style='font-size:larger'>The original text</span>**<br>(words are coloured in blue if they were selected for perturbation):", unsafe_allow_html=True) | |
st.write('<p style="padding: 1em">'+' '.join(res_orig)+'</p>', unsafe_allow_html=True) | |
st.write("**<span style='font-size:larger'>The perturbed text</span>**<br>(words are coloured in red if they appeared after perturbation):", unsafe_allow_html=True) | |
st.write('<p style="padding: 1em">'+' '.join(res_aug)+'</p>', unsafe_allow_html=True) |