Spaces:
Running
Running
File size: 29,679 Bytes
aeb6d58 cc8a66b f276a79 6d540bf ccde434 aac9ef0 1158e1e 9210847 fb1f20c aeb6d58 a4ab56b aeb6d58 c89c654 d7f014d aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 c89c654 d7f014d aeb6d58 c89c654 aeb6d58 c89c654 d7f014d aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 86e1422 c89c654 fb1f20c c89c654 5cd2be1 c89c654 fb1f20c c89c654 234a449 fb1f20c c89c654 fb1f20c 234a449 fb1f20c 234a449 fb1f20c 234a449 fb1f20c 234a449 fb1f20c 234a449 fb1f20c 234a449 fb1f20c aeb6d58 c89c654 89688fa c89c654 89688fa c89c654 89688fa c89c654 89688fa aeb6d58 c89c654 aac9ef0 aeb6d58 aac9ef0 ccde434 aac9ef0 ccde434 aac9ef0 ccde434 aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 fb1f20c f276a79 c89c654 f276a79 fb1f20c 54a0a2e c89c654 fb1f20c 848ffbd f276a79 6e57415 c89c654 6e57415 c589db3 c89c654 c589db3 8171dbf 8aa4f17 aeb6d58 fb1f20c c89c654 9210847 fb1f20c aeb6d58 c89c654 cc8a66b fb1f20c cc8a66b fb1f20c c89c654 cc8a66b 6e57415 cc8a66b 6e57415 aeb6d58 8aa4f17 9210847 fb1f20c aeb6d58 234a449 acb5890 c89c654 fb1f20c c89c654 234a449 c89c654 234a449 c89c654 234a449 c89c654 234a449 c89c654 234a449 c89c654 234a449 c89c654 aeb6d58 89688fa fb1f20c f276a79 8aa4f17 f276a79 aeb6d58 fb1f20c aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 2690375 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
import pandas as pd
import gradio as gr
import os
import re
import requests
from dotenv import load_dotenv
from matplotlib.colors import LinearSegmentedColormap
import plotly.express as px
import plotly.graph_objects as go
from sklearn.linear_model import LinearRegression
import numpy as np
from huggingface_hub import HfApi
from huggingface_hub.hf_api import HTTPError
from huggingface_hub.utils import GatedRepoError
from gradio_rangeslider import RangeSlider
import datetime
load_dotenv()
webhook_url = os.environ.get("WEBHOOK_URL")
file_name_list = [
"14b",
"9b",
"7b",
"3b",
"1b5",
"other",
]
sheet_name_list = [
"cr",
"bpc",
"bpb",
]
metric_list = [
"Compression Rate (%)",
"Bits Per Character (BPC)",
"Bits Per Byte (BPB)",
]
model_size_list = [
"~14B",
"~9B",
"~7B",
"~3B",
"~1.5B",
"Other",
]
metric_to_sheet = {
"Compression Rate (%)": "cr",
"Bits Per Character (BPC)": "bpc",
"Bits Per Byte (BPB)": "bpb",
}
model_size_to_file_name = {
"~14B": "14b",
"~9B": "9b",
"~7B": "7b",
"~3B": "3b",
"~1.5B": "1b5",
"Other": "other",
}
about_md = """
# Uncheatable Eval
GitHub page: [https://github.com/Jellyfish042/uncheatable_eval](https://github.com/Jellyfish042/uncheatable_eval)
## Introduction
Traditional LLM benchmarks are easily compromised by unintentional or intentional data leakage, making many benchmarks unreliable and unable to truly reflect the capabilities of LLMs.
Uncheatable Eval addresses this issue by testing LLMs on real-time, newly generated data from the internet,
ensuring that the evaluation is immune to data leaks and cannot be gamed.
## How?
Uncheatable Eval assesses the language modeling capabilities of LLMs on new data from various sources such as recent papers on arXiv, new projects on GitHub, news articles, and more. Since this data is brand new (e.g., from the past 1-2 weeks), it is impossible for these data to be included in the training sets of publicly released models, thus avoiding the impact of unintentional or intentional data leaks.
Specifically, we calculate the sum of negative log probabilities of the models on these texts. In other words, models that are more likely to generate these texts are considered better.
*Note* : Uncheatable Eval only tests base models.
## Q&A
### Why Calculate the Sum of Negative Log Probabilities?
First, the goal of language models, at least today's language models, is to generate text that is as realistic as possible, maximizing the probability of real text. They are trained and designed to do exactly this. Calculating the sum of negative log probabilities on real text is the most direct way to test this capability.
Second, from the perspective of "compression is intelligence," a good way to test a language model would be to use the model with an entropy coding algorithm for compression and test the model's compression rate [[1]](https://arxiv.org/abs/2309.10668)[[2]](https://arxiv.org/abs/2402.00861). A model with a lower compression rate is considered better. Using a language model + arithmetic coding as an example, it is easy to prove that a model's ability to compress a piece of text is proportional to the sum of its negative log probabilities on that text (see [proof](#proof-of-the-equivalence-between-compression-capability-and-negative-log-probability-sum)).
Therefore, the compression rate of a model can be directly calculated through the sum of negative log probabilities, and the method for this has been provided in `show_results_v2.ipynb`.
### Can Models Using Different Tokenizers Be Directly Compared?
Yes. When calculating the sum of negative log probabilities, we essentially treat the model + tokenizer as a single entity or system. As long as this system has a high probability of generating real text, we consider it better. From the perspective of compression, you can choose any tokenizer. From the compression rate perspective, we don't care; we only care about whether your system can compress the text more effectively.
### Is It Really Uncheatable? Can't I train my model on a large number of arXiv papers to improve its test performance on arXiv papers?
Uncheatable Eval's data sources currently include new arXiv papers, new GitHub projects, BBC news, AO3 fanfictions, and new Wikipedia entries, with more sources to be added in the future. If you genuinely achieve excellent results across these data by training extensively on these sources, I would consider you to have developed a genuinely good language model rather than cheating.
From my test results, accurately modeling these data is very challenging. I believe Uncheatable Eval more accurately reflects the value of every bit of data and computing you invest compared to other benchmarks. Models trained with more data and computing are almost always better, and there are no shortcuts. This is a key strength of Uncheatable Eval.
### Is This Too "Random"? Why Consider Random Texts from the Internet as Ground Truth?
This is why we choose rigorous and verified texts such as arXiv papers and news reports, which typically have better quality. Additionally, a round of Uncheatable Eval evaluates a model over millions of tokens, increasing the reliability of the results.
In fact, the model rankings obtained through Uncheatable Eval are very stable. For instance, the model ranked first in January's data is highly likely to remain first in February, March, April, May, and June, indicating that the data obtained through this method is sufficiently representative.
"""
def rename_columns(df):
df.columns = [col.rsplit("_", maxsplit=1)[0] for col in df.columns]
return df
def get_folders_matching_format(directory):
pattern = re.compile(r"^\d{4}-\d{2}$")
folders = []
if not os.path.exists(directory):
return folders
for item in os.listdir(directory):
full_path = os.path.join(directory, item)
if os.path.isdir(full_path) and pattern.match(item):
folders.append(full_path)
return folders
def get_unique_column_names(all_data):
# column_names = {}
#
# for folder_name, files in all_data.items():
# for file_name, sheets in files.items():
# for sheet_name, dataframe in sheets.items():
# for column in dataframe.columns:
# if column not in ['Name', 'Average (The lower the better)', 'Parameters Count (B)']:
# column_names[column] = None
#
# return list(column_names.keys())
return [
"ao3_\u200benglish",
"bbc_\u200bnews",
"wikipedia_\u200benglish",
"arxiv_\u200bcomputer_\u200bscience",
"arxiv_\u200bphysics",
"github_\u200bcpp",
"github_\u200bpython",
# "ao3_\u200bchinese",
]
def color_cell(value):
return "background-color: #fffdd0" if pd.notna(value) else "default"
def update_table(
period: str,
models_size: list,
metric: str,
visible_columns: list,
color_columns: list,
size_range: list,
midpoint: float = 0.5,
sort_by: str = "Average (lower=better)",
ascending: bool = True,
):
print(
f"Updating - time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}, period: {period}, models: {models_size}, metric: {metric}, visible_columns: {visible_columns}, color_columns: {color_columns}, size_range: {size_range}, sort_by: {sort_by}, ascending: {ascending}\n"
)
if not models_size:
return "No data available for the selected models and period."
# return pd.DataFrame()
target_period_data = all_data[period]
target_file_name = [model_size_to_file_name[model] for model in models_size]
sheet_name = metric_to_sheet[metric]
# combined_data = pd.concat([target_period_data[file_name][sheet_name] for file_name in target_file_name], axis=0)
combined_data = pd.concat(
[df.dropna(axis=1, how="all") for df in [target_period_data[file_name][sheet_name] for file_name in target_file_name]], axis=0
)
if len(combined_data) == 0:
return "No data available for the selected models and period."
# return pd.DataFrame()
# Filter models based on the size range
combined_data = combined_data[combined_data["Parameters Count (B)"].between(size_range[0], size_range[1])]
combined_data.reset_index(drop=True, inplace=True)
if len(combined_data) == 0:
return "No data available for the selected models and period."
# return pd.DataFrame()
combined_data["Name"] = combined_data["Name"].apply(lambda x: x.replace(".pth", ""))
relevant_columns = [col for col in visible_columns if col not in ["Name", "Parameters Count (B)", "Average (The lower the better)"]]
if len(combined_data) > 0:
combined_data["Average (The lower the better)"] = round(combined_data[relevant_columns].mean(axis=1), 3)
combined_data = combined_data.rename(columns={"Parameters Count (B)": "Params (B)"})
combined_data = combined_data.rename(columns={"Average (The lower the better)": "Average (lower=better)"})
sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending)
visible_columns = ["Name", "Params (B)", "Average (lower=better)"] + visible_columns
filtered_data = sorted_data[visible_columns]
filtered_data.columns = [col.replace("_", " ") for col in filtered_data.columns]
formatter = {col: "{:.3f}" for col in filtered_data.columns if filtered_data[col].dtype in ["float64", "float32"]}
# color gradient
colors = ["#63be7b", "#ffffff", "#f8696b"]
vmin = {}
vmax = {}
vmid = {}
for column in filtered_data.columns:
if column in ["Name", "Params (B)"]:
continue
col_values = filtered_data[column]
if len(col_values) > 1:
sorted_values = np.sort(col_values)
vmin[column] = sorted_values.min()
vmax[column] = sorted_values.max()
idx = int(len(sorted_values) * midpoint)
vmid[column] = sorted_values[idx]
def custom_background_gradient(series, cmap, vmin, vmax, vmid):
if len(series) == 0:
return series
def normalize(x):
if x <= vmid:
return 0.5 * (x - vmin) / (vmid - vmin)
else:
return 0.5 + 0.5 * (x - vmid) / (vmax - vmid)
normed = series.apply(normalize)
colors = [cmap(x) for x in normed]
return ["background-color: rgba({}, {}, {}, {})".format(*[int(255 * x) for x in c[:3]], c[3]) for c in colors]
target_color_columns = []
if "Average" in color_columns:
target_color_columns.append("Average (lower=better)")
if "Individual Tests" in color_columns:
target_color_columns.extend([col for col in filtered_data.columns if col not in ["Name", "Params (B)", "Average (lower=better)"]])
styler = filtered_data.style.format(formatter).map(color_cell, subset=["Params (B)"])
for column in target_color_columns:
styler = styler.apply(
custom_background_gradient,
cmap=LinearSegmentedColormap.from_list("custom_cmap", colors),
vmin=vmin[column],
vmax=vmax[column],
vmid=vmid[column],
subset=[column],
)
# return styler
styler = styler.hide(axis="index")
widths = [300, 150, 150, 100, 100, 100, 100, 100, 100, 100, 100]
table_styles = []
for i, w in enumerate(widths):
table_styles.append(
{
"selector": "th",
"props": [
("background-color", "#f5f5f5"),
("padding", "8px"),
("font-weight", "bold"),
],
}
)
table_styles.append(
{
"selector": f"th.col{i}",
"props": [
("min-width", f"{w}px"),
("max-width", f"{w}px"),
("text-align", "center"),
("border", "1px solid #dddddd"),
],
}
)
table_styles.append(
{
"selector": f"td.col{i}",
"props": [
("min-width", f"{w}px"),
("max-width", f"{w}px"),
("text-align", "center"),
("border", "1px solid #dddddd"),
],
}
)
table_styles.append(
{
"selector": "table",
"props": [
("border-collapse", "collapse"),
("border", "1px solid #dddddd"),
],
}
)
styler = styler.set_table_styles(table_styles)
html_output = styler.to_html()
return html_output
def create_world_languages_gdp_chart():
languages = ["English", "Chinese", "Spanish", "Japanese", "German", "French", "Arabic", "Italian", "Portuguese", "Korean", "Other"]
shares = [27, 18, 8, 6, 5, 4, 3, 2, 2, 2, 23]
colors = ["#FF7F7F", "#FFA07A", "#FFDB58", "#90EE90", "#98FB98", "#87CEFA", "#B0C4DE", "#DDA0DD", "#D8BFD8", "#F0E68C", "#E0FFFF"]
fig = go.Figure(
data=[
go.Pie(
labels=languages,
values=shares,
hole=0.3,
marker=dict(colors=colors, line=dict(color="#FFFFFF", width=2)),
textinfo="label+percent",
textposition="outside",
insidetextorientation="radial",
textfont=dict(size=12),
)
]
)
fig.update_layout(
title={
"text": "World Languages by Share of Global GDP",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
"font": dict(size=20, color="black"),
},
showlegend=False,
width=700,
height=500,
margin=dict(t=80, b=20, l=20, r=20),
)
return fig
def check_model_exists(model_id):
api = HfApi()
try:
model_info = api.model_info(model_id)
return "Exists and is accessible"
except GatedRepoError:
return "Exists but is restricted"
except HTTPError as e:
if e.response.status_code == 404:
return "Does not exist"
else:
return "Error: " + str(e)
def submit_model(name):
if "Exists" not in check_model_exists(name):
return f"# ERROR: Model {name} does not exist on Hugging Face!"
try:
response = requests.post(webhook_url, json={"content": name})
if response.status_code == 200:
response_data = response.json()
if response_data.get("status") == "success":
return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!"
else:
return f"# ERROR: {response_data.get('message', 'Unknown error')}"
else:
return f"# ERROR: Failed to submit model {name}. Server returned status code {response.status_code}."
except requests.exceptions.HTTPError:
return "# ERROR: Network error while contacting queue. Please try again in a few minutes."
except Exception as e:
print(e)
return "ERROR: Unexpected error. Please try again later."
# def create_scaling_plot(all_data, period):
# selected_columns = ["Name", "Parameters Count (B)", "Average (The lower the better)"]
# target_data = all_data[period]
# new_df = pd.DataFrame()
# for size in target_data.keys():
# new_df = pd.concat([new_df, target_data[size]["cr"].loc[:, selected_columns].dropna(axis=1, how="all")], axis=0)
# new_df.rename(columns={"Parameters Count (B)": "Params(B)", "Average (The lower the better)": "Compression Rate (%)"}, inplace=True)
# new_df["Log Params(B)"] = np.log(new_df["Params(B)"])
# new_df["Log Compression Rate (%)"] = np.log(new_df["Compression Rate (%)"])
# fig = px.scatter(
# new_df,
# x="Log Params(B)",
# y="Log Compression Rate (%)",
# title="Compression Rate Scaling Law",
# hover_name="Name",
# custom_data=["Params(B)", "Compression Rate (%)"],
# )
# fig.update_traces(
# hovertemplate="<b>%{hovertext}</b><br>Params(B): %{customdata[0]:.2f} B<br>Compression Rate (%): %{customdata[1]:.2f}<extra></extra>"
# )
# fig.update_layout(
# width=800, # 设置图像宽度
# height=600, # 设置图像高度
# title={"text": "Compression Rate Scaling Law", "x": 0.5, "xanchor": "center", "yanchor": "top"},
# showlegend=True,
# xaxis={"showgrid": True, "zeroline": False, "type": "linear", "title": "Params(B)"}, # 确保坐标轴类型正确
# yaxis={"showgrid": True, "zeroline": False, "type": "linear", "title": "Compression Rate (%)", "autorange": "reversed"},
# )
# names_to_connect_dict = {
# "2024-05": ["Meta-Llama-3-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"],
# "2024-06": ["Meta-Llama-3-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"],
# "2024-07": ["Meta-Llama-3.1-8B", "stablelm-3b-4e1t", "Qwen2-1.5B", "TinyLlama-1.1B-intermediate-step-1431k-3T", "Mistral-Nemo-Base-2407"],
# "2024-08": [
# "Meta-Llama-3.1-8B",
# "Rene-v0.1-1.3b-pytorch",
# "stablelm-3b-4e1t",
# "Qwen2-1.5B",
# "TinyLlama-1.1B-intermediate-step-1431k-3T",
# "Mistral-Nemo-Base-2407",
# ],
# "2025-01": ["Qwen2.5-1.5B"],
# }
# names_to_connect = names_to_connect_dict.get(period, names_to_connect_dict["2024-08"])
# connection_points = new_df[new_df["Name"].isin(names_to_connect)]
# print(connection_points)
# new_df["Color"] = new_df["Name"].apply(lambda name: "#39C5BB" if name in names_to_connect else "#636efa")
# fig.update_traces(marker=dict(color=new_df["Color"]))
# X = connection_points["Log Params(B)"].values.reshape(-1, 1)
# y = connection_points["Log Compression Rate (%)"].values
# model = LinearRegression().fit(X, y)
# x_min = connection_points["Log Params(B)"].min()
# x_max = connection_points["Log Params(B)"].max()
# extended_x = np.linspace(x_min, x_max * 1.5, 100)
# extended_x_original = np.exp(extended_x)
# trend_line_y = model.predict(extended_x.reshape(-1, 1))
# trend_line_y_original = np.exp(trend_line_y)
# trend_line = go.Scatter(
# x=extended_x,
# y=trend_line_y,
# mode="lines",
# line=dict(color="skyblue", dash="dash"),
# name="Trend Line",
# hovertemplate="<b>Params(B):</b> %{customdata[0]:.2f}<br>" + "<b>Compression Rate (%):</b> %{customdata[1]:.2f}<extra></extra>",
# customdata=np.stack((extended_x_original, trend_line_y_original), axis=-1),
# )
# fig.add_trace(trend_line)
# x_min = new_df["Params(B)"].min()
# x_max = new_df["Params(B)"].max()
# x_tick_vals = np.geomspace(x_min, x_max, num=5)
# x_tick_text = [f"{val:.1f}" for val in x_tick_vals]
# y_min = new_df["Compression Rate (%)"].min()
# y_max = new_df["Compression Rate (%)"].max()
# y_tick_vals = np.geomspace(y_min, y_max, num=5)
# y_tick_text = [f"{val:.1f}" for val in y_tick_vals]
# fig.update_xaxes(tickvals=np.log(x_tick_vals), ticktext=x_tick_text, title="Params(B)")
# fig.update_yaxes(tickvals=np.log(y_tick_vals), ticktext=y_tick_text, title="Compression Rate (%)", autorange="reversed")
# fig.update_layout(xaxis=dict(showgrid=True, zeroline=False), yaxis=dict(showgrid=True, zeroline=False))
# fig.update_traces(marker=dict(size=12))
# print(fig.layout)
# return fig
def create_scaling_plot(all_data, period):
selected_columns = ["Name", "Parameters Count (B)", "Average (The lower the better)"]
target_data = all_data[period]
new_df = pd.DataFrame()
for size in target_data.keys():
new_df = pd.concat([new_df, target_data[size]["cr"].loc[:, selected_columns].dropna(axis=1, how="all")], axis=0)
x_values = new_df["Parameters Count (B)"].astype(float).tolist()
y_values = new_df["Average (The lower the better)"].astype(float).tolist()
names = new_df["Name"].tolist()
# 计算对数空间的范围
x_min, x_max = np.log10(min(x_values)), np.log10(max(x_values))
y_min, y_max = np.log10(min(y_values)), np.log10(max(y_values))
# 计算合适的刻度间隔
x_dtick = (x_max - x_min) / 4 # 分成5个刻度
y_dtick = (y_max - y_min) / 4
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=x_values,
y=y_values,
mode="markers",
name="Models",
marker=dict(size=12, color="#39C5BB", opacity=0.8),
text=names,
customdata=list(zip(x_values, y_values)),
hovertemplate=(
"<b>%{text}</b><br>" + "Params: %{customdata[0]:.2f}B<br>" + "Compression Rate: %{customdata[1]:.2f}%<br>" + "<extra></extra>"
),
)
)
fig.update_layout(
title={"text": "Compression Rate Scaling Law", "x": 0.5, "xanchor": "center", "yanchor": "top"},
width=800,
height=600,
showlegend=True,
xaxis=dict(
title="Parameters (B)",
showgrid=True,
zeroline=False,
type="log",
dtick=x_dtick,
tickformat=".2f", # 保留两位小数
range=[x_min - 0.1, x_max + 0.1],
),
yaxis=dict(
title="Compression Rate (%)",
showgrid=True,
zeroline=False,
type="log",
dtick=y_dtick,
tickformat=".2f", # 保留两位小数
range=[y_min - 0.1, y_max + 0.1],
autorange="reversed",
),
)
return fig
def read_all_data(folder_name):
all_data = {}
time_list = []
for folder in get_folders_matching_format(folder_name):
folder_name = os.path.basename(folder)
time_list.append(folder_name)
if all_data.get(folder) is None:
all_data[folder_name] = {}
for file_name in file_name_list:
if all_data.get(file_name) is None:
all_data[folder_name][file_name] = {}
for sheet_name in sheet_name_list:
final_file_name = os.path.join(folder, file_name)
all_data[folder_name][file_name][sheet_name] = rename_columns(pd.read_excel(final_file_name + ".xlsx", sheet_name=sheet_name))
return all_data, time_list
# def read_mutilange_data(folder_path='mutilang_data'):
# mutilange_data = {}
# excel_files = [os.path.join(folder_path, file) for file in os.listdir(folder_path) if file.endswith('.xlsx')]
# time_list = [file.split('.')[0] for file in excel_files]
# time_list = [x.split('\\')[-1] for x in time_list]
# for file_name in excel_files:
# if mutilange_data.get(file_name) is None:
# mutilange_data[file_name] = {}
# for sheet_name in sheet_name_list:
# mutilange_data[file_name][sheet_name] = rename_columns(
# pd.read_excel(file_name, sheet_name=sheet_name))
# return mutilange_data, time_list
all_data, time_list = read_all_data("data")
# muti_lang_data, muti_lang_time_list = read_mutilange_data()
time_list.sort()
last_period = time_list[-1]
initial_fig = create_scaling_plot(all_data, last_period)
initial_metric = metric_list[0]
initial_columns = get_unique_column_names(all_data)
# initial_columns = initial_columns[:-1]
initial_colors = ["Average", "Individual Tests"]
initial_size_range = [0, 15]
initial_data = update_table(last_period, model_size_list, initial_metric, initial_columns, initial_colors, initial_size_range)
css = """
.gradio-container {
max-width: 95% !important;
margin: 0 auto;
}
.tab-buttons button {
font-size: 1.3em;
}
.gr-dataframe th {
white-space: normal;
word-break: break-word;
}
table {
margin-left: auto !important;
margin-right: auto !important;
width: 100% !important;
}
"""
TITLE_HTML = '<h1 style="text-align:center"><span style="font-size:1.3em">🏆 LLM Compression Leaderboard</span></h1>'
SUBTITLE_HTML = "<h1 style='text-align:center'><span style='font-size:0.8em'>Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating won’t work 🚫; only compute 💻, data 📊, and real innovation 🔥 can prevail!</span></h1>"
with gr.Blocks(css=css) as demo:
gr.HTML(TITLE_HTML)
gr.HTML(SUBTITLE_HTML)
with gr.Tabs() as tabs:
with gr.Tab("🏆 Leaderboard"):
with gr.Row():
with gr.Column():
period_selector = gr.Dropdown(label="Period", choices=time_list, value=last_period)
model_selector = gr.CheckboxGroup(label="Model Size", choices=model_size_list, value=model_size_list)
size_range_slider = RangeSlider(minimum=0, maximum=15, value=[0, 15], step=0.1, label="Model Size Range")
metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=initial_metric)
with gr.Column():
midpoint_slider = gr.Slider(minimum=0.1, maximum=0.9, value=0.5, step=0.01, label="Color Gradient Midpoint")
color_selector = gr.CheckboxGroup(label="Colored Columns", choices=["Average", "Individual Tests"], value=initial_colors)
colfilter = gr.CheckboxGroup(label="Data Source", choices=get_unique_column_names(all_data), value=initial_columns)
# table = gr.Dataframe(
# initial_data,
# column_widths=[130, 50, 50, 35, 35, 35, 35, 35, 35, 35, 35],
# wrap=True,
# max_height=800,
# )
table = gr.HTML(initial_data)
period_selector.change(
update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider],
outputs=table,
)
model_selector.change(
update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider],
outputs=table,
)
metric_selector.change(
update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider],
outputs=table,
)
colfilter.change(
update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider],
outputs=table,
)
color_selector.change(
update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider],
outputs=table,
)
size_range_slider.change(
update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider],
outputs=table,
)
midpoint_slider.change(
update_table,
inputs=[period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider],
outputs=table,
)
with gr.Tab("🌍 MultiLang"):
gr.Markdown("## Coming soon...")
world_languages_plot = gr.Plot(create_world_languages_gdp_chart())
with gr.Tab("📈 Scaling Law"):
period_selector_2 = gr.Dropdown(label="Period", choices=time_list, value=last_period)
def update_plot(period):
new_fig = create_scaling_plot(all_data, period)
return new_fig
plot = gr.Plot(initial_fig)
period_selector_2.change(update_plot, inputs=period_selector_2, outputs=plot)
with gr.Tab("ℹ️ About"):
gr.Markdown(about_md)
with gr.Tab("🚀 Submit"):
with gr.Group():
with gr.Row():
model_name = gr.Textbox(max_lines=1, placeholder="Enter model name...", show_label=False, scale=4)
submit = gr.Button("Submit", variant="primary", scale=0)
output = gr.Markdown("# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.")
submit.click(fn=submit_model, inputs=model_name, outputs=output)
demo.launch(share=False)
|