Spaces:
Sleeping
Sleeping
from abc import ABC, abstractmethod | |
from .activation import SoftMax | |
import numpy as np | |
class Loss(ABC): | |
def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
pass | |
def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
pass | |
class LogitsLoss(Loss): | |
pass | |
class MSE(Loss): | |
def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
return np.sum(np.square(y_hat - y_true)) / y_true.shape[0] | |
def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
return (y_hat - y_true) * (2 / y_true.shape[0]) | |
class CrossEntropy(Loss): | |
def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
y_hat = np.asarray(y_hat) | |
y_true = np.asarray(y_true) | |
m = y_true.shape[0] | |
p = self._softmax(y_hat) | |
eps = 1e-15 # to prevent log(0) | |
log_likelihood = -np.log( | |
np.clip(p[range(m), y_true.argmax(axis=1)], a_min=eps, a_max=None) | |
) | |
loss = np.sum(log_likelihood) / m | |
return loss | |
def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
y_hat = np.asarray(y_hat) | |
y_true = np.asarray(y_true) | |
grad = y_hat - y_true | |
return grad / y_true.shape[0] | |
def _softmax(X: np.ndarray) -> np.ndarray: | |
return SoftMax().forward(X) | |
class CrossEntropyWithLogits(LogitsLoss): | |
def forward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
# Apply the log-sum-exp trick for numerical stability | |
max_logits = np.max(y_hat, axis=1, keepdims=True) | |
log_sum_exp = np.log(np.sum(np.exp(y_hat - max_logits), axis=1, keepdims=True)) | |
log_probs = y_hat - max_logits - log_sum_exp | |
# Select the log probability of the true class | |
loss = -np.sum(log_probs * y_true) / y_true.shape[0] | |
return loss | |
def backward(self, y_hat: np.ndarray, y_true: np.ndarray) -> np.ndarray: | |
# Compute softmax probabilities | |
exps = np.exp(y_hat - np.max(y_hat, axis=1, keepdims=True)) | |
probs = exps / np.sum(exps, axis=1, keepdims=True) | |
# Subtract the one-hot encoded labels from the probabilities | |
grad = (probs - y_true) / y_true.shape[0] | |
return grad | |
LOSSES: dict[str, Loss] = { | |
"MSE": MSE(), | |
"CrossEntropy": CrossEntropy(), | |
"CrossEntropyWithLogitsLoss": CrossEntropyWithLogits(), | |
} | |