Numpy-Neuron / nn /activation.py
Jensen-holm's picture
latest update, finishing classification with MNIST! More details on
6d0453c
raw
history blame
1.34 kB
import numpy as np
from abc import abstractmethod, ABC
class Activation(ABC):
@abstractmethod
def forward(self, X: np.ndarray) -> np.ndarray:
pass
@abstractmethod
def backward(self, X: np.ndarray) -> np.ndarray:
pass
class Relu(Activation):
def forward(self, X: np.ndarray) -> np.ndarray:
return np.maximum(0, X)
def backward(self, X: np.ndarray) -> np.ndarray:
return np.where(X > 0, 1, 0)
class TanH(Activation):
def forward(self, X: np.ndarray) -> np.ndarray:
return np.tanh(X)
def backward(self, X: np.ndarray) -> np.ndarray:
return 1 - self.forward(X) ** 2
class Sigmoid(Activation):
def forward(self, X: np.ndarray) -> np.ndarray:
return 1.0 / (1.0 + np.exp(-X))
def backward(self, X: np.ndarray) -> np.ndarray:
s = self.forward(X)
return s - (1 - s)
class SoftMax(Activation):
def forward(self, X: np.ndarray) -> np.ndarray:
exps = np.exp(
X - np.max(X, axis=1, keepdims=True)
) # Avoid numerical instability
return exps / np.sum(exps, axis=1, keepdims=True)
def backward(self, X: np.ndarray) -> np.ndarray:
return X
ACTIVATIONS: dict[str, Activation] = {
"Relu": Relu(),
"Sigmoid": Sigmoid(),
"TanH": TanH(),
"SoftMax": SoftMax(),
}