Jensen-holm commited on
Commit
75481dd
Β·
1 Parent(s): 03f2b37

making it a python package on PyPI

Browse files
README.md CHANGED
@@ -5,15 +5,97 @@ colorFrom: yellow
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.26.0
8
- app_file: app.py
9
  pinned: false
10
  license: mit
11
  ---
12
 
13
- ## Dev Notes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  The remote added to this repo so that it runs on hugging face spaces
16
  `git remote add space git@hf.co:spaces/Jensen-holm/Numpy-Neuron`
17
 
18
  The command to force push to that space
19
- `git push --force space main`
 
5
  colorTo: blue
6
  sdk: gradio
7
  sdk_version: 4.26.0
8
+ app_file: gradio_app.py
9
  pinned: false
10
  license: mit
11
  ---
12
 
13
+
14
+ # Numpy-Neuron
15
+
16
+ A small, simple neural network framework built using only [numpy](https://numpy.org) and python (duh).
17
+ Here is an example of how to use the package for training a classifier.
18
+
19
+ ```py
20
+ from sklearn import datasets
21
+ from sklearn.preprocessing import OneHotEncoder
22
+ from sklearn.model_selection import train_test_split
23
+ from sklearn.metrics import accuracy_score, precision_score, recall_score
24
+ import numpy as np
25
+ from nn import (
26
+ NN,
27
+ Relu,
28
+ Sigmoid,
29
+ CrossEntropyWithLogits,
30
+ )
31
+
32
+
33
+ RANDOM_SEED = 2
34
+
35
+
36
+ def _preprocess_digits(
37
+ seed: int,
38
+ ) -> tuple[np.ndarray, ...]:
39
+ digits = datasets.load_digits(as_frame=False)
40
+ n_samples = len(digits.images)
41
+ data = digits.images.reshape((n_samples, -1))
42
+ y = OneHotEncoder().fit_transform(digits.target.reshape(-1, 1)).toarray()
43
+ X_train, X_test, y_train, y_test = train_test_split(
44
+ data,
45
+ y,
46
+ test_size=0.2,
47
+ random_state=seed,
48
+ )
49
+ return X_train, X_test, y_train, y_test
50
+
51
+
52
+ def train_nn_classifier() -> None:
53
+ X_train, X_test, y_train, y_test = _preprocess_digits(seed=RANDOM_SEED)
54
+
55
+ nn_classifier = NN(
56
+ epochs=2_000,
57
+ hidden_size=16,
58
+ batch_size=1,
59
+ learning_rate=0.01,
60
+ loss_fn=CrossEntropyWithLogits(),
61
+ hidden_activation_fn=Relu(),
62
+ output_activation_fn=Sigmoid(),
63
+ input_size=64, # 8x8 pixel grid images
64
+ output_size=10, # digits 0-9
65
+ seed=2,
66
+ )
67
+
68
+ nn_classifier.train(
69
+ X_train=X_train,
70
+ y_train=y_train,
71
+ )
72
+
73
+ pred = nn_classifier.predict(X_test=X_test)
74
+
75
+ pred = np.argmax(pred, axis=1)
76
+ y_test = np.argmax(y_test, axis=1)
77
+
78
+ accuracy = accuracy_score(y_true=y_test, y_pred=pred)
79
+
80
+ print(f"accuracy on validation set: {accuracy:.4f}")
81
+
82
+
83
+ if __name__ == "__main__":
84
+ train_nn_classifier()
85
+ ```
86
+
87
+
88
+ ## Roadmap
89
+
90
+ **Optimizers**
91
+ I would love to add the ability to modify the learning rate over each epoch to ensure
92
+ that the gradient descent algorithm does not get stuck in local minima as easily.
93
+
94
+
95
+ ## Gradio app demo development notes
96
 
97
  The remote added to this repo so that it runs on hugging face spaces
98
  `git remote add space git@hf.co:spaces/Jensen-holm/Numpy-Neuron`
99
 
100
  The command to force push to that space
101
+ `git push --force space main`
about_package.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Numpy-Neuron
2
+
3
+ A small, simple neural network framework built using only [numpy](https://numpy.org) and python (duh).
4
+ Here is an example of how to use the package for training a classifier.
5
+
6
+ ```py
7
+ from sklearn import datasets
8
+ from sklearn.preprocessing import OneHotEncoder
9
+ from sklearn.model_selection import train_test_split
10
+ from sklearn.metrics import accuracy_score, precision_score, recall_score
11
+ import numpy as np
12
+ from nn import (
13
+ NN,
14
+ Relu,
15
+ Sigmoid,
16
+ CrossEntropyWithLogits,
17
+ )
18
+
19
+
20
+ RANDOM_SEED = 2
21
+
22
+
23
+ def _preprocess_digits(
24
+ seed: int,
25
+ ) -> tuple[np.ndarray, ...]:
26
+ digits = datasets.load_digits(as_frame=False)
27
+ n_samples = len(digits.images)
28
+ data = digits.images.reshape((n_samples, -1))
29
+ y = OneHotEncoder().fit_transform(digits.target.reshape(-1, 1)).toarray()
30
+ X_train, X_test, y_train, y_test = train_test_split(
31
+ data,
32
+ y,
33
+ test_size=0.2,
34
+ random_state=seed,
35
+ )
36
+ return X_train, X_test, y_train, y_test
37
+
38
+
39
+ def train_nn_classifier() -> None:
40
+ X_train, X_test, y_train, y_test = _preprocess_digits(seed=RANDOM_SEED)
41
+
42
+ nn_classifier = NN(
43
+ epochs=2_000,
44
+ hidden_size=16,
45
+ batch_size=1,
46
+ learning_rate=0.01,
47
+ loss_fn=CrossEntropyWithLogits(),
48
+ hidden_activation_fn=Relu(),
49
+ output_activation_fn=Sigmoid(),
50
+ input_size=64, # 8x8 pixel grid images
51
+ output_size=10, # digits 0-9
52
+ seed=2,
53
+ )
54
+
55
+ nn_classifier.train(
56
+ X_train=X_train,
57
+ y_train=y_train,
58
+ )
59
+
60
+ pred = nn_classifier.predict(X_test=X_test)
61
+
62
+ pred = np.argmax(pred, axis=1)
63
+ y_test = np.argmax(y_test, axis=1)
64
+
65
+ accuracy = accuracy_score(y_true=y_test, y_pred=pred)
66
+
67
+ print(f"accuracy on validation set: {accuracy:.4f}")
68
+
69
+
70
+ if __name__ == "__main__":
71
+ train_nn_classifier()
72
+ ```
73
+
74
+
75
+ ## Roadmap
76
+
77
+ **Optimizers**
78
+ I would love to add the ability to modify the learning rate over each epoch to ensure
79
+ that the gradient descent algorithm does not get stuck in local minima as easily.
80
+
81
+
app.py β†’ gradio_app.py RENAMED
@@ -4,7 +4,7 @@ from sklearn.model_selection import train_test_split
4
  import numpy as np
5
  import gradio as gr
6
 
7
- import nn # custom neural network module
8
  from vis import ( # classification visualization funcitons
9
  show_digits,
10
  hits_and_misses,
@@ -84,7 +84,7 @@ def classification(
84
  if __name__ == "__main__":
85
 
86
  def _open_warning() -> str:
87
- with open("warning.md", "r") as f:
88
  return f.read()
89
 
90
  with gr.Blocks() as interface:
 
4
  import numpy as np
5
  import gradio as gr
6
 
7
+ import nn
8
  from vis import ( # classification visualization funcitons
9
  show_digits,
10
  hits_and_misses,
 
84
  if __name__ == "__main__":
85
 
86
  def _open_warning() -> str:
87
+ with open("gradio_warning.md", "r") as f:
88
  return f.read()
89
 
90
  with gr.Blocks() as interface:
warning.md β†’ gradio_warning.md RENAMED
File without changes
requirements.txt CHANGED
@@ -3,4 +3,5 @@ matplotlib==3.8.4
3
  numpy==1.26.4
4
  plotly==5.21.0
5
  scikit_learn==1.4.2
 
6
  tqdm==4.66.2
 
3
  numpy==1.26.4
4
  plotly==5.21.0
5
  scikit_learn==1.4.2
6
+ setuptools==69.5.1
7
  tqdm==4.66.2
setup.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import setup, find_packages
2
+
3
+ setup(
4
+ name="numpy_neuron",
5
+ version="0.3",
6
+ author="Jensen Holm",
7
+ author_email="jensen.dev.01@gmail.com",
8
+ description="Simple, lightweight neural network framework built in numpy",
9
+ long_description=open("about_package.md").read(),
10
+ long_description_content_type="text/markdown",
11
+ url="https://github.com/Jensen-holm/Numpy-Neuron",
12
+ project_urls={"Bug Tracker": "https://github.com/Jensen-holm/Numpy-Neuron/issues"},
13
+ package_dir={"": "nn"},
14
+ packages=find_packages(where="nn"),
15
+ classifiers=[
16
+ "Programming Language :: Python :: 3",
17
+ "License :: OSI Approved :: MIT License",
18
+ "Operating System :: OS Independent",
19
+ ],
20
+ python_requires=">=3.6",
21
+ )