Jensen-holm commited on
Commit
da3cde4
1 Parent(s): f308820

going to use this branch to re make this program in go using the gota

Browse files

package. Code will be cleaner and we will be able to add more features
easier.

.gitignore CHANGED
@@ -1,133 +1,25 @@
1
- # Byte-compiled / optimized / DLL files
2
- __pycache__/
3
- *.py[cod]
4
- *$py.class
5
-
6
- # C extensions
 
7
  *.so
 
8
 
9
- # Distribution / packaging
10
- .Python
11
- build/
12
- develop-eggs/
13
- dist/
14
- downloads/
15
- eggs/
16
- .eggs/
17
- lib/
18
- lib64/
19
- parts/
20
- sdist/
21
- var/
22
- wheels/
23
- pip-wheel-metadata/
24
- share/python-wheels/
25
- *.egg-info/
26
- .installed.cfg
27
- *.egg
28
- MANIFEST
29
-
30
- # PyInstaller
31
- # Usually these files are written by a python script from a template
32
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
- *.manifest
34
- *.spec
35
-
36
- # Installer logs
37
- pip-log.txt
38
- pip-delete-this-directory.txt
39
-
40
- # Unit test / coverage reports
41
- htmlcov/
42
- .tox/
43
- .nox/
44
- .coverage
45
- .coverage.*
46
- .cache
47
- nosetests.xml
48
- coverage.xml
49
- *.cover
50
- *.py,cover
51
- .hypothesis/
52
- .pytest_cache/
53
-
54
- # Translations
55
- *.mo
56
- *.pot
57
-
58
- # Django stuff:
59
- *.log
60
- local_settings.py
61
- db.sqlite3
62
- db.sqlite3-journal
63
-
64
- # Flask stuff:
65
- instance/
66
- .webassets-cache
67
-
68
- # Scrapy stuff:
69
- .scrapy
70
-
71
- # Sphinx documentation
72
- docs/_build/
73
-
74
- # PyBuilder
75
- target/
76
-
77
- # Jupyter Notebook
78
- .ipynb_checkpoints
79
-
80
- # IPython
81
- profile_default/
82
- ipython_config.py
83
 
84
- # pyenv
85
- .python-version
86
 
87
- # pipenv
88
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
90
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
91
- # install all needed dependencies.
92
- #Pipfile.lock
93
 
94
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95
- __pypackages__/
96
-
97
- # Celery stuff
98
- celerybeat-schedule
99
- celerybeat.pid
100
-
101
- # SageMath parsed files
102
- *.sage.py
103
-
104
- # Environments
105
- .env
106
- .venv
107
- env/
108
- venv/
109
- ENV/
110
- env.bak/
111
- venv.bak/
112
-
113
- # Spyder project settings
114
- .spyderproject
115
- .spyproject
116
-
117
- # Rope project settings
118
- .ropeproject
119
-
120
- # mkdocs documentation
121
- /site
122
-
123
- # mypy
124
- .mypy_cache/
125
- .dmypy.json
126
- dmypy.json
127
-
128
- # Pyre type checker
129
- .pyre/
130
-
131
- .idea
132
 
 
133
  .vscode
 
 
1
+ # If you prefer the allow list template instead of the deny list, see community template:
2
+ # https://github.com/github/gitignore/blob/main/community/Golang/Go.AllowList.gitignore
3
+ #
4
+ # Binaries for programs and plugins
5
+ *.exe
6
+ *.exe~
7
+ *.dll
8
  *.so
9
+ *.dylib
10
 
11
+ # Test binary, built with `go test -c`
12
+ *.test
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ # Output of the go coverage tool, specifically when used with LiteIDE
15
+ *.out
16
 
17
+ # Dependency directories (remove the comment below to include it)
18
+ # vendor/
 
 
 
 
19
 
20
+ # Go workspace file
21
+ go.work
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ .DS_Store
24
  .vscode
25
+ .idea
LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2023 Jensen Holm
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,52 +0,0 @@
1
- # Data Mining from scratch backend
2
-
3
- Currently living [here](https://data-mining-from-scratch-backend.onrender.com/) <br>
4
- Since the API is hosted using render's free tier, <br>
5
- every time 15 minutes goes by it gets shut down. <br>
6
- If a request is made while it is shut down, the web service <br>
7
- has to spin back up again which takes roughly 1 minute <br>
8
-
9
- ### Example Useage
10
-
11
- ```python
12
- import requests
13
- import json
14
-
15
- request_params = {
16
- "arguments": {
17
- "epochs": 100,
18
- "activation_func": "tanh",
19
- "hidden_size": 8,
20
- "learning_rate": 0.01
21
- }
22
- }
23
-
24
- headers = {
25
- "Content-Type": "application/json",
26
- }
27
-
28
- r = requests.post(
29
- "https://data-mining-from-scratch-backend.onrender.com/neural-network",
30
- headers=headers,
31
- data=json.dumps(request_params),
32
- )
33
-
34
- model_data = r.json()
35
- print(model_data)
36
- ```
37
-
38
- ### Parameter Options
39
-
40
- - End Points: <br>
41
-
42
- -`"neural-network"` <br>
43
-
44
- - `"kmeans-clustering"` <br> -`"kmedoid-clustering"` <br> -`"heirarchical-clustering"` <br>
45
-
46
- - Algorithm Specific Arguments
47
-
48
- - neural-network
49
- - epochs: any integer
50
- - activation_func: tanh, sigmoid, or relu
51
- - hidden_size: must be an even integer
52
- - learning_rate: any floating point number
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py DELETED
@@ -1,44 +0,0 @@
1
- from flask import Flask, request, jsonify, render_template
2
- from flask_cors import CORS
3
-
4
- from dataset.iris import iris
5
- from opts import options
6
-
7
- # using the iris data set for every algorithm
8
- # just for simplicity sake
9
- X, y = iris()
10
-
11
- app = Flask(__name__)
12
-
13
- CORS(app, origins="*")
14
-
15
-
16
- @app.route("/neural-network", methods=["POST"])
17
- def neural_network():
18
- algorithm = options["neural-network"]
19
- args = request.json["arguments"]
20
-
21
- result = algorithm(
22
- X=X,
23
- y=y,
24
- args=args,
25
- )
26
- return jsonify(result)
27
-
28
-
29
- @app.route("/kmeans-clustering", methods=["POST"])
30
- def kmeans():
31
- algorithm = options["kmeans-clustering"]
32
- args = request.json["arguments"]
33
-
34
- result = algorithm(
35
- X=X,
36
- y=y,
37
- clusterer="kmeans-clustering",
38
- args=args,
39
- )
40
- return jsonify(result)
41
-
42
-
43
- if __name__ == "__main__":
44
- app.run(debug=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/clusterer.py DELETED
@@ -1,22 +0,0 @@
1
- from dataclasses import dataclass
2
- from typing import Callable
3
-
4
-
5
- @dataclass
6
- class Clusterer:
7
- cluster_func: Callable
8
- plt_data = None
9
-
10
- def eval(
11
- self,
12
- pred_labels,
13
- true_labels,
14
- ) -> None:
15
- ...
16
-
17
- def set_plot_data(self, plt_data):
18
- self.plt_data = plt_data
19
-
20
- @classmethod
21
- def from_dict(cls, dct: dict):
22
- return cls(**dct)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/distance.py DELETED
@@ -1,19 +0,0 @@
1
- import numpy as np
2
-
3
- # right now I am not using this function
4
- # maybe get rid of it or change it to how we
5
- # use it in our distance calculations
6
-
7
- def euclidean(
8
- point: np.array,
9
- data: np.array,
10
- ):
11
- """
12
- Computed the euclidean distance
13
- between a point and the rest
14
- of the dataset
15
- point dims: (m,)
16
- data dims: (n, m)
17
- output dims: (n,)
18
- """
19
- return np.sqrt(np.sum((point - data)**2), aixs=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/heirarchical.py DELETED
File without changes
cluster/kmeans.py DELETED
@@ -1,78 +0,0 @@
1
- from dataclasses import dataclass
2
- import numpy as np
3
-
4
- from cluster.clusterer import Clusterer
5
-
6
-
7
- @dataclass
8
- class Kmeans(Clusterer):
9
- k: int
10
- max_iter: int
11
- centroids = None
12
- clusters = None
13
-
14
- def build(
15
- self,
16
- X: np.array,
17
- ) -> None:
18
- # randomly initialize centroids
19
- centroids = X[np.random.choice(
20
- X.shape[0],
21
- self.k,
22
- replace=False,
23
- )]
24
-
25
- # Calculate Euclidean distance between each data point and each centroid
26
- # then assign each point to its closest cluster
27
- clusters = self.assign_clusters(X, centroids)
28
- centroids = self.update_centroids(self.k, X, clusters)
29
-
30
- while True:
31
- new_clusts = self.assign_clusters(X, centroids)
32
- if np.array_equal(new_clusts, clusters):
33
- break
34
- clusters = new_clusts
35
- centroids = self.update_centroids(self.k, X, clusters)
36
-
37
- self.clusters = clusters
38
- self.centroids = centroids
39
-
40
- @staticmethod
41
- def assign_clusters(
42
- X: np.array,
43
- centroids: np.array,
44
- ) -> np.array:
45
- distances = np.sqrt(((X - centroids[:, np.newaxis])**2).sum(axis=2))
46
- clusts = np.argmin(distances, axis=0)
47
- return clusts
48
-
49
- @staticmethod
50
- def update_centroids(
51
- k: int,
52
- X: np.array,
53
- clusters: np.array,
54
- ) -> np.array:
55
- centroids = np.zeros((k, X.shape[1]))
56
- for i in range(k):
57
- centroids[i] = X[clusters == i].mean(axis=0)
58
- return centroids
59
-
60
- def to_dict(
61
- self,
62
- X: np.array,
63
- ) -> dict:
64
- cluster_data = []
65
- for i in range(self.k):
66
- indices = np.where(self.clusters == i)[0]
67
- cluster_pts = X[indices].tolist()
68
- cluster_data.append({
69
- "cluster_id": i,
70
- "centroid": self.centroids[i].tolist(),
71
- "points": cluster_pts,
72
- })
73
- return {
74
- "k": self.k,
75
- "max_iter": self.max_iter,
76
- "clusters": cluster_data,
77
- "plt_data": self.plt_data,
78
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/kmedoids.py DELETED
@@ -1,15 +0,0 @@
1
- from dataclasses import dataclass
2
- import numpy as np
3
-
4
- from cluster.clusterer import Clusterer
5
-
6
-
7
- @dataclass
8
- class Kmedoids(Clusterer):
9
- k: int
10
-
11
- def main(self, X):
12
- ...
13
-
14
- def build(self, X: np.array):
15
- ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/main.py DELETED
@@ -1,22 +0,0 @@
1
- import numpy as np
2
-
3
- from cluster.clusterer import Clusterer
4
- from cluster.opts import clustering_methods
5
- from cluster.plot import plot
6
-
7
-
8
- def main(
9
- X: np.array,
10
- y: np.array,
11
- clusterer: str,
12
- args: dict,
13
- ) -> dict:
14
- cluster_alg: Clusterer = clustering_methods[clusterer]
15
-
16
- args.update({"cluster_func": cluster_alg})
17
- alg = cluster_alg.from_dict(args)
18
-
19
- alg.build(X)
20
- plt_data = plot(clusterer=alg, X=X)
21
- alg.set_plot_data(plt_data)
22
- return alg.to_dict(X)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cluster/opts.py DELETED
@@ -1,8 +0,0 @@
1
- from cluster.kmedoids import Kmedoids
2
- from cluster.kmeans import Kmeans
3
-
4
-
5
- clustering_methods = {
6
- "kmeans-clustering": Kmeans,
7
- "kmedoids-clustering": Kmedoids,
8
- }
 
 
 
 
 
 
 
 
 
cluster/plot.py DELETED
@@ -1,39 +0,0 @@
1
- import matplotlib
2
- import matplotlib.pyplot as plt
3
- import seaborn as sns
4
- import io
5
-
6
-
7
- matplotlib.use("Agg")
8
- sns.set()
9
-
10
-
11
- def plot(clusterer, X):
12
- cluster_data = clusterer.to_dict(X)["clusters"]
13
- fig, ax = plt.subplots(figsize=(8, 6))
14
- for cluster in cluster_data:
15
- sns.scatterplot(
16
- x=[point[0] for point in cluster["points"]],
17
- y=[point[1] for point in cluster["points"]],
18
- label=f"Cluster {cluster['cluster_id']}",
19
- ax=ax,
20
- )
21
- ax.scatter(
22
- x=cluster["centroid"][0],
23
- y=cluster["centroid"][1],
24
- marker="x",
25
- s=100,
26
- linewidth=2,
27
- color="red",
28
- )
29
- ax.legend()
30
- ax.set_title("K-means Clustering")
31
- ax.set_ylabel("Normalized Petal Length (cm)")
32
- ax.set_xlabel("Normalized Petal Length (cm)")
33
-
34
- # Save the plot to a BytesIO buffer
35
- buffer = io.BytesIO()
36
- plt.savefig(buffer, format='png')
37
- buffer.seek(0)
38
-
39
- return buffer.read()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset/iris.py DELETED
@@ -1,14 +0,0 @@
1
- from sklearn.datasets import load_iris
2
- from sklearn.preprocessing import OneHotEncoder, StandardScaler
3
-
4
- def iris():
5
- """
6
- returns a tuple of numpy arrays containing the
7
- iris dataset split into training and testing sets
8
- after being normalized and one-hot encoded
9
- """
10
- iris = load_iris()
11
- scaler = StandardScaler()
12
- x = scaler.fit_transform(iris.data)
13
- y = OneHotEncoder().fit_transform(iris.target.reshape(-1, 1)).toarray()
14
- return x, y
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
example/kmeans.py DELETED
@@ -1,31 +0,0 @@
1
-
2
- import json
3
- import requests
4
- import matplotlib.pyplot as plt
5
- import seaborn as sns
6
-
7
-
8
- ENDPOINT: str = "http://127.0.0.1:5000/"
9
-
10
- request_params = {
11
- "arguments": {
12
- "clusterer": "kmeans-clustering",
13
- "k": 3,
14
- "max_iter": 100,
15
- },
16
- }
17
-
18
-
19
- headers = {
20
- "Content-Type": "application/json",
21
- }
22
-
23
- r = requests.post(
24
- ENDPOINT,
25
- headers=headers,
26
- data=json.dumps(request_params),
27
- )
28
-
29
-
30
- if __name__ == "__main__":
31
- print(r.json())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
example/kmedoids.py DELETED
File without changes
example/neural_network.py DELETED
@@ -1,27 +0,0 @@
1
- import requests
2
- import json
3
-
4
-
5
- ENDPOINT: str = "http://127.0.0.1:5000/neural-network"
6
-
7
- request_params = {
8
- "arguments": {
9
- "epochs": 100,
10
- "activation_func": "tanh",
11
- "hidden_size": 8,
12
- "learning_rate": 0.01
13
- }
14
- }
15
-
16
- headers = {
17
- "Content-Type": "application/json",
18
- }
19
-
20
- r = requests.post(
21
- ENDPOINT,
22
- headers=headers,
23
- data=json.dumps(request_params),
24
- )
25
-
26
- if __name__ == "__main__":
27
- print(r.json()["plt_data"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
go.mod ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ module github.com/Jensen-holm/ml-from-scratch
2
+
3
+ go 1.19
4
+
5
+ require (
6
+ github.com/go-gota/gota v0.12.0 // indirect
7
+ golang.org/x/net v0.0.0-20210423184538-5f58ad60dda6 // indirect
8
+ gonum.org/v1/gonum v0.9.1 // indirect
9
+ )
go.sum ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dmitri.shuralyov.com/gpu/mtl v0.0.0-20190408044501-666a987793e9/go.mod h1:H6x//7gZCb22OMCxBHrMx7a5I7Hp++hsVxbQ4BYO7hU=
2
+ gioui.org v0.0.0-20210308172011-57750fc8a0a6/go.mod h1:RSH6KIUZ0p2xy5zHDxgAM4zumjgTw83q2ge/PI+yyw8=
3
+ github.com/BurntSushi/xgb v0.0.0-20160522181843-27f122750802/go.mod h1:IVnqGOEym/WlBOVXweHU+Q+/VP0lqqI8lqeDx9IjBqo=
4
+ github.com/ajstarks/svgo v0.0.0-20180226025133-644b8db467af/go.mod h1:K08gAheRH3/J6wwsYMMT4xOr94bZjxIelGM0+d/wbFw=
5
+ github.com/boombuler/barcode v1.0.0/go.mod h1:paBWMcWSl3LHKBqUq+rly7CNSldXjb2rDl3JlRe0mD8=
6
+ github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
7
+ github.com/fogleman/gg v1.2.1-0.20190220221249-0403632d5b90/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k=
8
+ github.com/fogleman/gg v1.3.0/go.mod h1:R/bRT+9gY/C5z7JzPU0zXsXHKM4/ayA+zqcVNZzPa1k=
9
+ github.com/go-fonts/dejavu v0.1.0/go.mod h1:4Wt4I4OU2Nq9asgDCteaAaWZOV24E+0/Pwo0gppep4g=
10
+ github.com/go-fonts/latin-modern v0.2.0/go.mod h1:rQVLdDMK+mK1xscDwsqM5J8U2jrRa3T0ecnM9pNujks=
11
+ github.com/go-fonts/liberation v0.1.1/go.mod h1:K6qoJYypsmfVjWg8KOVDQhLc8UDgIK2HYqyqAO9z7GY=
12
+ github.com/go-fonts/stix v0.1.0/go.mod h1:w/c1f0ldAUlJmLBvlbkvVXLAD+tAMqobIIQpmnUIzUY=
13
+ github.com/go-gl/glfw v0.0.0-20190409004039-e6da0acd62b1/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU=
14
+ github.com/go-gota/gota v0.12.0 h1:T5BDg1hTf5fZ/CO+T/N0E+DDqUhvoKBl+UVckgcAAQg=
15
+ github.com/go-gota/gota v0.12.0/go.mod h1:UT+NsWpZC/FhaOyWb9Hui0jXg0Iq8e/YugZHTbyW/34=
16
+ github.com/go-latex/latex v0.0.0-20210118124228-b3d85cf34e07/go.mod h1:CO1AlKB2CSIqUrmQPqA0gdRIlnLEY0gK5JGjh37zN5U=
17
+ github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k=
18
+ github.com/jung-kurt/gofpdf v1.0.0/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
19
+ github.com/jung-kurt/gofpdf v1.0.3-0.20190309125859-24315acbbda5/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
20
+ github.com/phpdave11/gofpdf v1.4.2/go.mod h1:zpO6xFn9yxo3YLyMvW8HcKWVdbNqgIfOOp2dXMnm1mY=
21
+ github.com/phpdave11/gofpdi v1.0.12/go.mod h1:vBmVV0Do6hSBHC8uKUQ71JGW+ZGQq74llk/7bXwjDoI=
22
+ github.com/pkg/errors v0.8.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
23
+ github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
24
+ github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
25
+ github.com/ruudk/golang-pdf417 v0.0.0-20181029194003-1af4ab5afa58/go.mod h1:6lfFZQK844Gfx8o5WFuvpxWRwnSoipWe/p622j1v06w=
26
+ github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
27
+ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
28
+ golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
29
+ golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
30
+ golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
31
+ golang.org/x/exp v0.0.0-20190125153040-c74c464bbbf2/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
32
+ golang.org/x/exp v0.0.0-20190306152737-a1d7652674e8/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
33
+ golang.org/x/exp v0.0.0-20191002040644-a1355ae1e2c3/go.mod h1:NOZ3BPKG0ec/BKJQgnvsSFpcKLM5xXVWnvZS97DWHgE=
34
+ golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs=
35
+ golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
36
+ golang.org/x/image v0.0.0-20190802002840-cff245a6509b/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
37
+ golang.org/x/image v0.0.0-20190910094157-69e4b8554b2a/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
38
+ golang.org/x/image v0.0.0-20200119044424-58c23975cae1/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
39
+ golang.org/x/image v0.0.0-20200430140353-33d19683fad8/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
40
+ golang.org/x/image v0.0.0-20200618115811-c13761719519/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
41
+ golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
42
+ golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
43
+ golang.org/x/mobile v0.0.0-20190719004257-d2bd2a29d028/go.mod h1:E/iHnbuqvinMTCcRqshq8CkpyQDoeVncDDYHnLhea+o=
44
+ golang.org/x/mod v0.1.0/go.mod h1:0QHyrYULN0/3qlju5TqG8bIK38QM8yzMo5ekMj3DlcY=
45
+ golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
46
+ golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
47
+ golang.org/x/net v0.0.0-20210423184538-5f58ad60dda6 h1:0PC75Fz/kyMGhL0e1QnypqK2kQMqKt9csD1GnMJR+Zk=
48
+ golang.org/x/net v0.0.0-20210423184538-5f58ad60dda6/go.mod h1:OJAsFXCWl8Ukc7SiCT/9KSuxbyM7479/AVlXFRxuMCk=
49
+ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
50
+ golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
51
+ golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
52
+ golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
53
+ golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
54
+ golang.org/x/sys v0.0.0-20210304124612-50617c2ba197/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
55
+ golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
56
+ golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
57
+ golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
58
+ golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
59
+ golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
60
+ golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
61
+ golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
62
+ golang.org/x/tools v0.0.0-20190206041539-40960b6deb8e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
63
+ golang.org/x/tools v0.0.0-20190927191325-030b2cf1153e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
64
+ golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
65
+ gonum.org/v1/gonum v0.0.0-20180816165407-929014505bf4/go.mod h1:Y+Yx5eoAFn32cQvJDxZx5Dpnq+c3wtXuadVZAcxbbBo=
66
+ gonum.org/v1/gonum v0.8.2/go.mod h1:oe/vMfY3deqTw+1EZJhuvEW2iwGF1bW9wwu7XCu0+v0=
67
+ gonum.org/v1/gonum v0.9.1 h1:HCWmqqNoELL0RAQeKBXWtkp04mGk8koafcB4He6+uhc=
68
+ gonum.org/v1/gonum v0.9.1/go.mod h1:TZumC3NeyVQskjXqmyWt4S3bINhy7B4eYwW69EbyX+0=
69
+ gonum.org/v1/netlib v0.0.0-20190313105609-8cb42192e0e0/go.mod h1:wa6Ws7BG/ESfp6dHfk7C6KdzKA7wR7u/rKwOGE66zvw=
70
+ gonum.org/v1/plot v0.0.0-20190515093506-e2840ee46a6b/go.mod h1:Wt8AAjI+ypCyYX3nZBvf6cAIx93T+c/OS2HFAYskSZc=
71
+ gonum.org/v1/plot v0.9.0/go.mod h1:3Pcqqmp6RHvJI72kgb8fThyUnav364FOsdDo2aGW5lY=
72
+ rsc.io/pdf v0.1.1/go.mod h1:n8OzWcQ6Sp37PL01nO98y4iUCRdTGarVfzxY20ICaU4=
main.go ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ package main
2
+
3
+ func main() {
4
+
5
+ }
neural_network/activation.py DELETED
@@ -1,26 +0,0 @@
1
- import numpy as np
2
-
3
-
4
- def relu(x):
5
- return np.maximum(x, 0)
6
-
7
-
8
- def relu_prime(x):
9
- return np.where(x > 0, 1, 0)
10
-
11
-
12
- def tanh(x):
13
- return np.tanh(x)
14
-
15
-
16
- def tanh_prime(x):
17
- return 1 - np.tanh(x) ** 2
18
-
19
-
20
- def sigmoid(x):
21
- return 1.0 / (1.0 + np.exp(-x))
22
-
23
-
24
- def sigmoid_prime(x):
25
- s = sigmoid(x)
26
- return s / 1.0 - s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
neural_network/backprop.py DELETED
@@ -1,73 +0,0 @@
1
- import numpy as np
2
- from typing import Callable
3
-
4
- from neural_network.neural_network import NeuralNetwork
5
-
6
-
7
- def fp(
8
- X_train: np.array,
9
- y_train: np.array,
10
- func: Callable,
11
- w1: np.array,
12
- w2: np.array,
13
- b1: np.array,
14
- b2: np.array,
15
- ):
16
- n1 = compute_node(arr=X_train, w=w1, b=b1, func=func)
17
- y_hat = compute_node(arr=n1, w=w2, b=b2, func=func)
18
- return y_hat, n1, (y_hat-y_train)
19
-
20
-
21
- def bp(
22
- X_train: np.array,
23
- y_train: np.array,
24
- wb: dict,
25
- args: dict,
26
- ) -> NeuralNetwork:
27
- args.update(wb)
28
- model = NeuralNetwork.from_dict(args)
29
- loss_history = []
30
- for _ in range(model.epochs):
31
- # forward prop
32
- y_hat, node1, error = fp(
33
- X_train=X_train,
34
- y_train=y_train,
35
- func=model.activation_func,
36
- w1=model.w1, w2=model.w2, b1=model.b1, b2=model.b2,
37
- )
38
- mean_squared_error = mse(y_train, y_hat)
39
- loss_history.append(mean_squared_error)
40
-
41
- # backprop
42
- dw1 = np.dot(
43
- X_train.T,
44
- np.dot(error * model.func_prime(y_hat), model.w2.T) *
45
- model.func_prime(node1),
46
- )
47
- dw2 = np.dot(
48
- node1.T,
49
- error * model.func_prime(y_hat),
50
- )
51
- db2 = np.sum(error * model.func_prime(y_hat), axis=0)
52
- db1 = np.sum(
53
- np.dot(error * model.func_prime(y_hat), model.w2.T) * model.func_prime(node1), axis=0,
54
- )
55
-
56
- # update weights & biases using gradient descent.
57
- # this is -= and not += because if the gradient descent
58
- # is positive, we want to go down.
59
- model.w1 -= (model.learning_rate * dw1)
60
- model.w2 -= (model.learning_rate * dw2)
61
- model.b1 -= (model.learning_rate * db1)
62
- model.b2 -= (model.learning_rate * db2)
63
-
64
- model.set_loss_hist(loss_hist=loss_history)
65
- return model
66
-
67
-
68
- def compute_node(arr, w, b, func):
69
- return func(np.dot(arr, w) + b)
70
-
71
-
72
- def mse(y: np.array, y_hat: np.array):
73
- return np.mean((y - y_hat) ** 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
neural_network/main.py DELETED
@@ -1,51 +0,0 @@
1
- from sklearn.model_selection import train_test_split
2
- import numpy as np
3
-
4
- from neural_network.opts import activation
5
- from neural_network.backprop import bp
6
-
7
-
8
- def init(X: np.array, hidden_size: int):
9
- """
10
- returns a dictionary containing randomly initialized
11
- weights and biases to start off the neural_network
12
- """
13
- return {
14
- "w1": np.random.randn(X.shape[1], hidden_size),
15
- "b1": np.zeros((1, hidden_size)),
16
- "w2": np.random.randn(hidden_size, 3), # Output layer has 3 neurons
17
- "b2": np.zeros((1, 3)), # Output layer has 3 neurons
18
- }
19
-
20
-
21
- def main(
22
- X: np.array,
23
- y: np.array,
24
- args,
25
- ) -> None:
26
- wb = init(X, args["hidden_size"])
27
- act = activation[args["activation_func"]]
28
- args["activation_func"] = act["main"]
29
- args["func_prime"] = act["prime"]
30
- X_train, X_test, y_train, y_test = train_test_split(
31
- X,
32
- y,
33
- test_size=0.2,
34
- random_state=8675309,
35
- )
36
-
37
- model = bp(
38
- X_train=X_train,
39
- y_train=y_train,
40
- wb=wb,
41
- args=args,
42
- )
43
-
44
- # evaluate the model and return final results
45
- model.eval(
46
- X_test=X_test,
47
- y_test=y_test,
48
- )
49
-
50
- model.plot()
51
- return model.to_dict()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
neural_network/neural_network.py DELETED
@@ -1,86 +0,0 @@
1
- from dataclasses import dataclass, field
2
- from matplotlib import pyplot as plt
3
- import matplotlib
4
- import seaborn as sns
5
- from typing import Callable
6
- import numpy as np
7
- import base64
8
- import io
9
-
10
- sns.set()
11
- matplotlib.use("Agg")
12
-
13
-
14
- @dataclass
15
- class NeuralNetwork:
16
- epochs: int
17
- learning_rate: float
18
- activation_func: Callable
19
- func_prime: Callable
20
- hidden_size: int
21
- w1: np.array
22
- w2: np.array
23
- b1: np.array
24
- b2: np.array
25
-
26
- mse: float = 0
27
- loss_history: list = field(
28
- default_factory=lambda: [],
29
- )
30
- plt_data = None
31
-
32
- def predict(self, x: np.array) -> np.array:
33
- n1 = self.compute_node(x, self.w1, self.b1, self.activation_func)
34
- return self.compute_node(n1, self.w2, self.b2, self.activation_func)
35
-
36
- def set_loss_hist(self, loss_hist: list) -> None:
37
- self.loss_history = loss_hist
38
-
39
- def eval(self, X_test, y_test) -> None:
40
- self.mse = np.mean((self.predict(X_test) - y_test) ** 2)
41
-
42
- def set_plot_data(self, plot_data):
43
- self.plt_data = plot_data
44
-
45
- def plot(self):
46
- sns.set()
47
- fig, ax = plt.subplots()
48
- sns.lineplot(
49
- x=np.arange(len(self.loss_history)),
50
- y=self.loss_history,
51
- ax=ax,
52
- )
53
- plt.ylabel("Loss")
54
- plt.xlabel("Epoch")
55
- plt.title("Loss / Epoch")
56
-
57
- buffer = io.BytesIO()
58
- plt.savefig(buffer, format='png')
59
- buffer.seek(0)
60
- plt_data = buffer.read()
61
- plt_data_encoded = base64.b64encode(plt_data).decode('utf-8')
62
- self.set_plot_data(plt_data_encoded)
63
- plt.close()
64
-
65
- @staticmethod
66
- def compute_node(arr, w, b, func) -> np.array:
67
- return func(np.dot(arr, w) + b)
68
-
69
- @classmethod
70
- def from_dict(cls, dct):
71
- return cls(**dct)
72
-
73
- def to_dict(self) -> dict:
74
- return {
75
- # "w1": self.w1.tolist(),
76
- # "w2": self.w2.tolist(),
77
- # "b1": self.b1.tolist(),
78
- # "b2": self.b2.tolist(),
79
- "epochs": self.epochs,
80
- "learning_rate": self.learning_rate,
81
- "activation_func": self.activation_func.__name__,
82
- "func_prime": self.func_prime.__name__,
83
- "hidden_size": self.hidden_size,
84
- "mse": self.mse,
85
- "plt_data": self.plt_data,
86
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
neural_network/opts.py DELETED
@@ -1,18 +0,0 @@
1
- from neural_network.activation import *
2
-
3
- activation = {
4
- "relu": {
5
- "main": relu,
6
- "prime": relu_prime,
7
- },
8
-
9
- "sigmoid": {
10
- "main": sigmoid,
11
- "prime": sigmoid_prime,
12
- },
13
-
14
- "tanh": {
15
- "main": tanh,
16
- "prime": tanh_prime,
17
- },
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
opts.py DELETED
@@ -1,10 +0,0 @@
1
- from neural_network.main import main as nn
2
- from cluster.main import main as clust
3
-
4
- options = {
5
- "neural-network": nn,
6
- "kmeans-clustering": clust,
7
- "kmedoid-clustering": clust,
8
- "heirarchical-clustering": clust,
9
- "dbscan-clustering": clust,
10
- }
 
 
 
 
 
 
 
 
 
 
 
requirements.txt DELETED
@@ -1,8 +0,0 @@
1
- Flask==2.2.3
2
- Flask_Cors==3.0.10
3
- matplotlib==3.5.3
4
- numpy==1.21.6
5
- requests==2.28.2
6
- scikit_learn==1.0.2
7
- seaborn==0.12.2
8
- gunicorn==20.1.0