Jensen-holm commited on
Commit
f9522cf
·
1 Parent(s): 4c97910

just focusing on neural_network first

Browse files
README.md CHANGED
@@ -1,2 +1,4 @@
1
  # Data-Mining-Study
2
  Building out things I have learned in CIS-335 in order to prepare for final exam
 
 
 
1
  # Data-Mining-Study
2
  Building out things I have learned in CIS-335 in order to prepare for final exam
3
+
4
+ Trying my best to build most of this stuff purely off of my notes and lecture powerpoints
main.py CHANGED
@@ -1,5 +1,7 @@
1
  import numpy as np
2
 
 
 
3
 
4
  def random_dataset():
5
  """
@@ -14,18 +16,18 @@ def random_dataset():
14
  )
15
 
16
 
17
- def main(method: str, X: np.array, y: np.array):
18
- pass
19
-
20
-
21
-
22
  if __name__ == "__main__":
23
  method = input("\nChoose a method to test: ").lower()
 
 
24
 
25
  X, y = random_dataset()
26
- main(
27
- method=method,
28
- X=X,
29
  y=y,
 
 
 
 
30
  )
31
-
 
1
  import numpy as np
2
 
3
+ import neural_network.main as nn
4
+
5
 
6
  def random_dataset():
7
  """
 
16
  )
17
 
18
 
 
 
 
 
 
19
  if __name__ == "__main__":
20
  method = input("\nChoose a method to test: ").lower()
21
+ if method != "nn":
22
+ raise ValueError(f"Invalid method '{method}'. Choose 'nn' instead.")
23
 
24
  X, y = random_dataset()
25
+ args = nn.get_args()
26
+ nn.main(
27
+ X=X,
28
  y=y,
29
+ epochs=args["epochs"],
30
+ hidden_size=args["hidden_size"],
31
+ learning_rate=args["learning_rate"],
32
+ activation_func=args["activation_func"],
33
  )
 
neural_network/backprop.py CHANGED
@@ -1,11 +1,7 @@
1
  import numpy as np
2
 
3
 
 
 
4
 
5
 
6
- # for testing only
7
- if __name__ == "__main__":
8
- def test():
9
- pass
10
-
11
- test()
 
1
  import numpy as np
2
 
3
 
4
+ def bp():
5
+ return
6
 
7
 
 
 
 
 
 
 
neural_network/forwardprop.py CHANGED
@@ -1,5 +1,6 @@
 
1
 
2
 
3
- def forward_prop():
4
  return
5
 
 
1
+ import numpy as np
2
 
3
 
4
+ def fp():
5
  return
6
 
neural_network/main.py CHANGED
@@ -1,6 +1,21 @@
1
  import numpy as np
2
 
3
  from neural_network.forwardprop import fp
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
 
6
  def init(X: np.array, y: np.array, hidden_size: int) -> dict:
@@ -17,14 +32,14 @@ def init(X: np.array, y: np.array, hidden_size: int) -> dict:
17
 
18
 
19
  def main(
20
- X: np.array,
21
- y: np.array,
22
- epochs: int,
23
- hidden_size: int,
24
  learning_rate: float,
25
  activation_func: str,
26
  ) -> None:
27
- wb = init(X, y, hidden_size)
28
 
29
  for e in range(epochs):
30
 
@@ -32,5 +47,3 @@ def main(
32
  bp()
33
 
34
  # update weights and biases
35
-
36
-
 
1
  import numpy as np
2
 
3
  from neural_network.forwardprop import fp
4
+ from neural_network.backprop import bp
5
+
6
+
7
+ def get_args():
8
+ """
9
+ returns a dictionary containing
10
+ the arguments to be passed to
11
+ the main function
12
+ """
13
+ return {
14
+ "epochs": int(input("Enter the number of epochs: ")),
15
+ "hidden_size": int(input("Enter the number of hidden nodes: ")),
16
+ "learning_rate": float(input("Enter the learning rate: ")),
17
+ "activation_func": input("Enter the activation function: "),
18
+ }
19
 
20
 
21
  def init(X: np.array, y: np.array, hidden_size: int) -> dict:
 
32
 
33
 
34
  def main(
35
+ X: np.array,
36
+ y: np.array,
37
+ epochs: int,
38
+ hidden_size: int,
39
  learning_rate: float,
40
  activation_func: str,
41
  ) -> None:
42
+ wb = init(X, y, hidden_size)
43
 
44
  for e in range(epochs):
45
 
 
47
  bp()
48
 
49
  # update weights and biases
 
 
neural_network/opts.py CHANGED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from neural_network.activation import *
2
+
3
+
4
+ activation = {
5
+ "relu": {
6
+ "main": relu,
7
+ "prime": relu_prime,
8
+ },
9
+
10
+ "sigmoid": {
11
+ "main": sigmoid,
12
+ "prime": sigmoid_prime,
13
+ },
14
+ }
opts.py DELETED
File without changes