Spaces:
Sleeping
Sleeping
Commit
·
ffc3a3a
1
Parent(s):
592a0f1
fixing train test split issue with iris dataset
Browse files- dataset/iris.py +3 -16
- neural_network/main.py +10 -5
dataset/iris.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
from sklearn.datasets import load_iris
|
2 |
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
3 |
-
from sklearn.model_selection import train_test_split
|
4 |
import numpy as np
|
5 |
|
6 |
|
@@ -11,19 +10,7 @@ def iris() -> tuple[np.array]:
|
|
11 |
after being normalized and one-hot encoded
|
12 |
"""
|
13 |
iris = load_iris()
|
14 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
15 |
-
iris.data,
|
16 |
-
iris.target,
|
17 |
-
test_size=0.3,
|
18 |
-
random_state=8675309,
|
19 |
-
)
|
20 |
scaler = StandardScaler()
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
X_test
|
25 |
-
)
|
26 |
-
|
27 |
-
y_train = OneHotEncoder().fit_transform(y_train.reshape(-1, 1)).toarray()
|
28 |
-
y_test = OneHotEncoder().fit_transform(y_test.reshape(-1, 1)).toarray()
|
29 |
-
return X_train, X_test, y_train, y_test
|
|
|
1 |
from sklearn.datasets import load_iris
|
2 |
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
|
|
3 |
import numpy as np
|
4 |
|
5 |
|
|
|
10 |
after being normalized and one-hot encoded
|
11 |
"""
|
12 |
iris = load_iris()
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
scaler = StandardScaler()
|
14 |
+
x = scaler.fit_transform(iris.data)
|
15 |
+
y = OneHotEncoder().fit_transform(iris.target.reshape(-1, 1)).toarray()
|
16 |
+
return x, y
|
|
|
|
|
|
|
|
|
|
|
|
neural_network/main.py
CHANGED
@@ -22,16 +22,21 @@ def init(
|
|
22 |
|
23 |
|
24 |
def main(
|
25 |
-
|
26 |
-
|
27 |
-
X_test: np.array,
|
28 |
-
y_test: np.array,
|
29 |
args,
|
30 |
) -> None:
|
31 |
-
wb = init(
|
32 |
act = activation[args["activation_func"]]
|
33 |
args["activation_func"] = act["main"]
|
34 |
args["func_prime"] = act["prime"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
model = bp(X_train, y_train, wb, args)
|
36 |
|
37 |
# evaluate the model and return final results
|
|
|
22 |
|
23 |
|
24 |
def main(
|
25 |
+
X: np.array,
|
26 |
+
y: np.array,
|
|
|
|
|
27 |
args,
|
28 |
) -> None:
|
29 |
+
wb = init(X, args["hidden_size"])
|
30 |
act = activation[args["activation_func"]]
|
31 |
args["activation_func"] = act["main"]
|
32 |
args["func_prime"] = act["prime"]
|
33 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
34 |
+
X,
|
35 |
+
y,
|
36 |
+
test_size=0.2,
|
37 |
+
random_state=8675309,
|
38 |
+
)
|
39 |
+
|
40 |
model = bp(X_train, y_train, wb, args)
|
41 |
|
42 |
# evaluate the model and return final results
|