from sklearn.model_selection import train_test_split from nn.nn import NN import pandas as pd import numpy as np def init_weights_biases(nn: NN) -> None: np.random.seed(88) bh = np.zeros((1, 1)) bo = np.zeros((1, 1)) wh = np.random.randn(1, nn.input_size) * np.sqrt(2 / nn.input_size) wo = np.random.randn(1, nn.hidden_size) * np.sqrt(2 / nn.hidden_size) nn.set_bh(bh) nn.set_bo(bo) nn.set_wh(wh) nn.set_wo(wo) def train(nn: NN) -> dict: init_weights_biases(nn=nn) X_train, X_test, y_train, y_test = train_test_split( nn.X, nn.y, test_size=nn.test_size, random_state=88, ) return {"status": "you made it!"}