from sklearn import datasets from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np from numpyneuron import ( NN, Relu, Sigmoid, CrossEntropyWithLogits, ) RANDOM_SEED = 2 def preprocess_digits( seed: int, ) -> tuple[np.ndarray, ...]: digits = datasets.load_digits(as_frame=False) n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) y = OneHotEncoder().fit_transform(digits.target.reshape(-1, 1)).toarray() X_train, X_test, y_train, y_test = train_test_split( data, y, test_size=0.2, random_state=seed, ) return X_train, X_test, y_train, y_test def train_nn_classifier( X_train: np.ndarray, y_train: np.ndarray, ) -> NN: nn_classifier = NN( epochs=2_000, hidden_size=16, batch_size=1, learning_rate=0.01, loss_fn=CrossEntropyWithLogits(), hidden_activation_fn=Relu(), output_activation_fn=Sigmoid(), input_size=64, # 8x8 pixel grid images output_size=10, # digits 0-9 seed=2, ) nn_classifier.train( X_train=X_train, y_train=y_train, ) return nn_classifier if __name__ == "__main__": X_train, X_test, y_train, y_test = preprocess_digits(seed=RANDOM_SEED) classifier = train_nn_classifier(X_train, y_train) pred = classifier.predict(X_test) pred = np.argmax(pred, axis=1) y_test = np.argmax(y_test, axis=1) accuracy = accuracy_score(y_true=y_test, y_pred=pred) print(f"accuracy on validation set: {accuracy:.4f}")