# Numpy-Neuron A small, simple neural network framework built using only [numpy](https://numpy.org) and python (duh). ## Install `pip install numpyneuron` ## Example ```py from sklearn import datasets from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, precision_score, recall_score import numpy as np from numpyneuron import ( NN, Relu, Sigmoid, CrossEntropyWithLogits, ) RANDOM_SEED = 2 def _preprocess_digits( seed: int, ) -> tuple[np.ndarray, ...]: digits = datasets.load_digits(as_frame=False) n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) y = OneHotEncoder().fit_transform(digits.target.reshape(-1, 1)).toarray() X_train, X_test, y_train, y_test = train_test_split( data, y, test_size=0.2, random_state=seed, ) return X_train, X_test, y_train, y_test def train_nn_classifier() -> None: X_train, X_test, y_train, y_test = _preprocess_digits(seed=RANDOM_SEED) nn_classifier = NN( epochs=2_000, hidden_size=16, batch_size=1, learning_rate=0.01, loss_fn=CrossEntropyWithLogits(), hidden_activation_fn=Relu(), output_activation_fn=Sigmoid(), input_size=64, # 8x8 pixel grid images output_size=10, # digits 0-9 seed=2, ) nn_classifier.train( X_train=X_train, y_train=y_train, ) pred = nn_classifier.predict(X_test=X_test) pred = np.argmax(pred, axis=1) y_test = np.argmax(y_test, axis=1) accuracy = accuracy_score(y_true=y_test, y_pred=pred) print(f"accuracy on validation set: {accuracy:.4f}") if __name__ == "__main__": train_nn_classifier() ``` ## Roadmap **Optimizers** Currently the learning rate in a NN object is static during training. I would like to work on developing at least the functionality for the Adam optimizer at some point. This would help prevent getting stuck in local minima of the loss function.