qingxu99 commited on
Commit
fc33168
1 Parent(s): e965c36

移除陈旧函数

Browse files
crazy_functions/下载arxiv论文翻译摘要.py CHANGED
@@ -1,5 +1,4 @@
1
  from toolbox import update_ui
2
- from request_llm.bridge_chatgpt import predict_no_ui
3
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf
4
  import re, requests, unicodedata, os
5
 
 
1
  from toolbox import update_ui
 
2
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf
3
  import re, requests, unicodedata, os
4
 
crazy_functions/总结word文档.py CHANGED
@@ -1,4 +1,3 @@
1
- from request_llm.bridge_chatgpt import predict_no_ui
2
  from toolbox import update_ui
3
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
4
  fast_debug = False
 
 
1
  from toolbox import update_ui
2
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
  fast_debug = False
crazy_functions/批量总结PDF文档.py CHANGED
@@ -1,4 +1,3 @@
1
- from request_llm.bridge_chatgpt import predict_no_ui
2
  from toolbox import update_ui
3
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
4
  import re
 
 
1
  from toolbox import update_ui
2
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
  import re
crazy_functions/批量总结PDF文档pdfminer.py CHANGED
@@ -1,4 +1,3 @@
1
- from request_llm.bridge_chatgpt import predict_no_ui
2
  from toolbox import update_ui
3
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
4
 
 
 
1
  from toolbox import update_ui
2
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
 
crazy_functions/批量翻译PDF文档_多线程.py CHANGED
@@ -2,10 +2,12 @@ from toolbox import CatchException, report_execption, write_results_to_file
2
  from toolbox import update_ui
3
  from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
4
  from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
5
-
6
 
7
  def read_and_clean_pdf_text(fp):
8
  """
 
 
9
  **输入参数说明**
10
  - `fp`:需要读取和清理文本的pdf文件路径
11
 
@@ -22,17 +24,43 @@ def read_and_clean_pdf_text(fp):
22
  - 清除重复的换行
23
  - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
24
  """
25
- import fitz
26
  import re
27
  import numpy as np
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  # file_content = ""
29
  with fitz.open(fp) as doc:
30
  meta_txt = []
31
  meta_font = []
 
 
 
32
  for index, page in enumerate(doc):
33
  # file_content += page.get_text()
34
  text_areas = page.get_text("dict") # 获取页面上的文本信息
35
-
 
 
 
 
 
 
 
 
 
36
  # 块元提取 for each word segment with in line for each line cross-line words for each block
37
  meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
38
  '- ', '') for t in text_areas['blocks'] if 'lines' in t])
@@ -41,6 +69,56 @@ def read_and_clean_pdf_text(fp):
41
  if index == 0:
42
  page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
43
  '- ', '') for t in text_areas['blocks'] if 'lines' in t]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  def 把字符太少的块清除为回车(meta_txt):
46
  for index, block_txt in enumerate(meta_txt):
@@ -85,6 +163,10 @@ def read_and_clean_pdf_text(fp):
85
  # 换行 -> 双换行
86
  meta_txt = meta_txt.replace('\n', '\n\n')
87
 
 
 
 
 
88
  return meta_txt, page_one_meta
89
 
90
 
@@ -145,21 +227,23 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
145
  TOKEN_LIMIT_PER_FRAGMENT = 1600
146
  generated_conclusion_files = []
147
  for index, fp in enumerate(file_manifest):
 
148
  # 读取PDF文件
149
  file_content, page_one = read_and_clean_pdf_text(fp)
 
150
  # 递归地切割PDF文件
151
  from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
152
  from toolbox import get_conf
153
  enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
154
  def get_token_num(txt): return len(enc.encode(txt))
155
- # 分解文本
156
  paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
157
  txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
158
  page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
159
  txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
160
- # 为了更好的效果,我们剥离Introduction之后的部分
161
- paper_meta = page_one_fragments[0].split('introduction')[0].split(
162
- 'Introduction')[0].split('INTRODUCTION')[0]
 
163
  # 单线,获取文章meta信息
164
  paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
165
  inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
@@ -168,23 +252,32 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
168
  chatbot=chatbot, history=[],
169
  sys_prompt="Your job is to collect information from materials。",
170
  )
 
171
  # 多线,翻译
172
  gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
173
  inputs_array=[
174
- f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
175
- inputs_show_user_array=[f"" for _ in paper_fragments],
176
  llm_kwargs=llm_kwargs,
177
  chatbot=chatbot,
178
  history_array=[[paper_meta] for _ in paper_fragments],
179
  sys_prompt_array=[
180
- "请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
181
  max_workers=16 # OpenAI所允许的最大并行过载
182
  )
183
 
184
- final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
 
 
 
 
 
 
185
  final.extend(gpt_response_collection)
186
  create_report_file_name = f"{os.path.basename(fp)}.trans.md"
187
  res = write_results_to_file(final, file_name=create_report_file_name)
 
 
188
  generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
189
  chatbot.append((f"{fp}完成了吗?", res))
190
  yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面
@@ -200,4 +293,4 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
200
  if os.path.exists(pdf_path):
201
  os.remove(pdf_path)
202
  chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
203
- yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) # 刷新界面
 
2
  from toolbox import update_ui
3
  from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
4
  from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
5
+ from colorful import *
6
 
7
  def read_and_clean_pdf_text(fp):
8
  """
9
+ 这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好,不建议任何人去读这个函数
10
+
11
  **输入参数说明**
12
  - `fp`:需要读取和清理文本的pdf文件路径
13
 
 
24
  - 清除重复的换行
25
  - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
26
  """
27
+ import fitz, copy
28
  import re
29
  import numpy as np
30
+ fc = 0
31
+ fs = 1
32
+ fb = 2
33
+ REMOVE_FOOT_NOTE = True
34
+ REMOVE_FOOT_FFSIZE_PERCENT = 0.95
35
+ def primary_ffsize(l):
36
+ fsize_statiscs = {}
37
+ for wtf in l['spans']:
38
+ if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0
39
+ fsize_statiscs[wtf['size']] += len(wtf['text'])
40
+ return max(fsize_statiscs, key=fsize_statiscs.get)
41
+
42
+ def ffsize_same(a,b):
43
+ return abs((a-b)/max(a,b)) < 0.02
44
  # file_content = ""
45
  with fitz.open(fp) as doc:
46
  meta_txt = []
47
  meta_font = []
48
+
49
+ meta_line = []
50
+ meta_span = []
51
  for index, page in enumerate(doc):
52
  # file_content += page.get_text()
53
  text_areas = page.get_text("dict") # 获取页面上的文本信息
54
+ for t in text_areas['blocks']:
55
+ if 'lines' in t:
56
+ pf = 998
57
+ for l in t['lines']:
58
+ txt_line = "".join([wtf['text'] for wtf in l['spans']])
59
+ pf = primary_ffsize(l)
60
+ meta_line.append([txt_line, pf, l['bbox'], l])
61
+ for wtf in l['spans']: # for l in t['lines']:
62
+ meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])])
63
+ # meta_line.append(["NEW_BLOCK", pf])
64
  # 块元提取 for each word segment with in line for each line cross-line words for each block
65
  meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
66
  '- ', '') for t in text_areas['blocks'] if 'lines' in t])
 
69
  if index == 0:
70
  page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
71
  '- ', '') for t in text_areas['blocks'] if 'lines' in t]
72
+ # 获取正文主字体
73
+ fsize_statiscs = {}
74
+ for span in meta_span:
75
+ if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0
76
+ fsize_statiscs[span[1]] += span[2]
77
+ main_fsize = max(fsize_statiscs, key=fsize_statiscs.get)
78
+ if REMOVE_FOOT_NOTE:
79
+ give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT
80
+
81
+ # 切分和重新整合
82
+ mega_sec = []
83
+ sec = []
84
+ for index, line in enumerate(meta_line):
85
+ if index == 0:
86
+ sec.append(line[fc])
87
+ continue
88
+ if REMOVE_FOOT_NOTE:
89
+ if meta_line[index][fs] <= give_up_fize_threshold:
90
+ continue
91
+ if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]):
92
+ # 尝试识别段落
93
+ if meta_line[index][fc].endswith('.') and\
94
+ (meta_line[index-1][fc] != 'NEW_BLOCK') and \
95
+ (meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7:
96
+ sec[-1] += line[fc]
97
+ sec[-1] += "\n\n"
98
+ else:
99
+ sec[-1] += " "
100
+ sec[-1] += line[fc]
101
+ else:
102
+ if (index+1 < len(meta_line)) and \
103
+ meta_line[index][fs] > main_fsize:
104
+ # 单行 + 字体大
105
+ mega_sec.append(copy.deepcopy(sec))
106
+ sec = []
107
+ sec.append("# " + line[fc])
108
+ else:
109
+ # 尝试识别section
110
+ if meta_line[index-1][fs] > meta_line[index][fs]:
111
+ sec.append("\n" + line[fc])
112
+ else:
113
+ sec.append(line[fc])
114
+ mega_sec.append(copy.deepcopy(sec))
115
+
116
+ finals = []
117
+ for ms in mega_sec:
118
+ final = " ".join(ms)
119
+ final = final.replace('- ', ' ')
120
+ finals.append(final)
121
+ meta_txt = finals
122
 
123
  def 把字符太少的块清除为回车(meta_txt):
124
  for index, block_txt in enumerate(meta_txt):
 
163
  # 换行 -> 双换行
164
  meta_txt = meta_txt.replace('\n', '\n\n')
165
 
166
+ for f in finals:
167
+ print亮黄(f)
168
+ print亮绿('***************************')
169
+
170
  return meta_txt, page_one_meta
171
 
172
 
 
227
  TOKEN_LIMIT_PER_FRAGMENT = 1600
228
  generated_conclusion_files = []
229
  for index, fp in enumerate(file_manifest):
230
+
231
  # 读取PDF文件
232
  file_content, page_one = read_and_clean_pdf_text(fp)
233
+
234
  # 递归地切割PDF文件
235
  from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
236
  from toolbox import get_conf
237
  enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
238
  def get_token_num(txt): return len(enc.encode(txt))
 
239
  paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
240
  txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
241
  page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
242
  txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
243
+
244
+ # 为了更好的效果,我们剥离Introduction之后的部分(如果有)
245
+ paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
246
+
247
  # 单线,获取文章meta信息
248
  paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
249
  inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
 
252
  chatbot=chatbot, history=[],
253
  sys_prompt="Your job is to collect information from materials。",
254
  )
255
+
256
  # 多线,翻译
257
  gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
258
  inputs_array=[
259
+ f"以下是你需要翻译的论文片段:\n{frag}" for frag in paper_fragments],
260
+ inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
261
  llm_kwargs=llm_kwargs,
262
  chatbot=chatbot,
263
  history_array=[[paper_meta] for _ in paper_fragments],
264
  sys_prompt_array=[
265
+ "请你作为一个学术翻译,负责把学术论文的片段准确翻译成中文。" for _ in paper_fragments],
266
  max_workers=16 # OpenAI所允许的最大并行过载
267
  )
268
 
269
+ # 整理报告的格式
270
+ for i,k in enumerate(gpt_response_collection):
271
+ if i%2==0:
272
+ gpt_response_collection[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection)//2}]:\n "
273
+ else:
274
+ gpt_response_collection[i] = gpt_response_collection[i]
275
+ final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
276
  final.extend(gpt_response_collection)
277
  create_report_file_name = f"{os.path.basename(fp)}.trans.md"
278
  res = write_results_to_file(final, file_name=create_report_file_name)
279
+
280
+ # 更新UI
281
  generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
282
  chatbot.append((f"{fp}完成了吗?", res))
283
  yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面
 
293
  if os.path.exists(pdf_path):
294
  os.remove(pdf_path)
295
  chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
296
+ yield from update_ui(chatbot=chatbot, history=chatbot) # 刷新界面
crazy_functions/理解PDF文档内容.py CHANGED
@@ -1,4 +1,3 @@
1
- from request_llm.bridge_chatgpt import predict_no_ui
2
  from toolbox import update_ui
3
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
4
  import re
 
 
1
  from toolbox import update_ui
2
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
  import re
crazy_functions/生成函数注释.py CHANGED
@@ -1,4 +1,3 @@
1
- from request_llm.bridge_chatgpt import predict_no_ui
2
  from toolbox import update_ui
3
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
4
  fast_debug = False
 
 
1
  from toolbox import update_ui
2
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
  fast_debug = False
crazy_functions/读文章写摘要.py CHANGED
@@ -1,4 +1,3 @@
1
- from request_llm.bridge_chatgpt import predict_no_ui
2
  from toolbox import update_ui
3
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
4
  fast_debug = False
 
 
1
  from toolbox import update_ui
2
  from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
3
  fast_debug = False
request_llm/bridge_chatgpt.py CHANGED
@@ -39,38 +39,6 @@ def get_full_error(chunk, stream_response):
39
  break
40
  return chunk
41
 
42
- def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
43
- """
44
- 发送至chatGPT,等待回复,一次性完成,不显示中间过程。
45
- predict函数的简化版。
46
- 用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。
47
-
48
- inputs 是本次问询的输入
49
- top_p, temperature是chatGPT的内部调优参数
50
- history 是之前的对话列表
51
- (注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError)
52
- """
53
- headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
54
-
55
- retry = 0
56
- while True:
57
- try:
58
- # make a POST request to the API endpoint, stream=False
59
- response = requests.post(API_URL, headers=headers, proxies=proxies,
60
- json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
61
- except requests.exceptions.ReadTimeout as e:
62
- retry += 1
63
- traceback.print_exc()
64
- if retry > MAX_RETRY: raise TimeoutError
65
- if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
66
-
67
- try:
68
- result = json.loads(response.text)["choices"][0]["message"]["content"]
69
- return result
70
- except Exception as e:
71
- if "choices" not in response.text: print(response.text)
72
- raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
73
-
74
 
75
  def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
76
  """
@@ -276,7 +244,10 @@ def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
276
  "presence_penalty": 0,
277
  "frequency_penalty": 0,
278
  }
279
- print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]}")
 
 
 
280
  return headers,payload
281
 
282
 
 
39
  break
40
  return chunk
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
44
  """
 
244
  "presence_penalty": 0,
245
  "frequency_penalty": 0,
246
  }
247
+ try:
248
+ print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]}")
249
+ except:
250
+ print('输入中可能存在乱码。')
251
  return headers,payload
252
 
253
 
toolbox.py CHANGED
@@ -87,10 +87,10 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
87
  top_p, temperature: gpt参数
88
  history: gpt参数 对话历史
89
  sys_prompt: gpt参数 sys_prompt
90
- long_connection: 是否采用更稳定的连接方式(推荐)
91
  """
92
  import time
93
- from request_llm.bridge_chatgpt import predict_no_ui, predict_no_ui_long_connection
94
  from toolbox import get_conf
95
  TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
96
  # 多线程的时候,需要一个mutable结构在不同线程之间传递信息
@@ -101,13 +101,9 @@ def predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, temp
101
  def mt(i_say, history):
102
  while True:
103
  try:
104
- if long_connection:
105
- mutable[0] = predict_no_ui_long_connection(
106
- inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
107
- else:
108
- mutable[0] = predict_no_ui(
109
- inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
110
- break
111
  except ConnectionAbortedError as token_exceeded_error:
112
  # 尝试计算比例,尽可能多地保留文本
113
  p_ratio, n_exceed = get_reduce_token_percent(
 
87
  top_p, temperature: gpt参数
88
  history: gpt参数 对话历史
89
  sys_prompt: gpt参数 sys_prompt
90
+ long_connection: 是否采用更稳定的连接方式(推荐)(已弃用)
91
  """
92
  import time
93
+ from request_llm.bridge_chatgpt import predict_no_ui_long_connection
94
  from toolbox import get_conf
95
  TIMEOUT_SECONDS, MAX_RETRY = get_conf('TIMEOUT_SECONDS', 'MAX_RETRY')
96
  # 多线程的时候,需要一个mutable结构在不同线程之间传递信息
 
101
  def mt(i_say, history):
102
  while True:
103
  try:
104
+ mutable[0] = predict_no_ui_long_connection(
105
+ inputs=i_say, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt)
106
+
 
 
 
 
107
  except ConnectionAbortedError as token_exceeded_error:
108
  # 尝试计算比例,尽可能多地保留文本
109
  p_ratio, n_exceed = get_reduce_token_percent(