from transformers import pipeline import gradio as gr # from diffusers import DiffusionPipeline # from diffusers import FluxPipeline import torch import time import requests import io import os from PIL import Image # Load models translator = pipeline("translation", model="Helsinki-NLP/opus-mt-dra-en") # summarizer = pipeline("summarization", model="Falconsai/text_summarization") # image_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16).to("cpu") # for summarizer api SUMMARIZER_API_URL = "https://api.groq.com/openai/v1/chat/completions" summarizer_headers = {"Authorization": f"Bearer {os.getenv('GROQ_API_TOKEN')}", "Content-Type": "application/json"} # for image api IMAGE_API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image" img_headers = {"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}"} def query(payload): response = requests.post(IMAGE_API_URL, headers=img_headers, json=payload) return response.content # Translate Tamil to English def translate_tamil_to_english(text): time.sleep(2) result = translator(text) return result[0]['translation_text'] # Summarize English Paragraph def summarize_english_text(paragraph): time.sleep(2) # Request payload payload = { "model": "mixtral-8x7b-32768", "messages": [ {"role": "system", "content": "Create a summary of below paragraph in 30 words max"}, {"role": "user", "content": paragraph} ], "max_tokens": 100 # number of words in the output. } # Send POST request to Groq API response = requests.post(SUMMARIZER_API_URL, json=payload, headers=summarizer_headers) # Check if the request was successful if response.status_code == 200: # Parse the JSON response result = response.json() # Extract and print the generated text generated_text = result['choices'][0]['message']['content'] return generated_text else: return f"Error: {response.status_code}, {response.text}" # Generate image from English text def english_text_to_image(prompt): image_bytes = query({ "inputs": prompt, }) image = Image.open(io.BytesIO(image_bytes)) return image with gr.Blocks() as app: gr.Markdown("# Multifunctional Gradio App") with gr.Row(): tamil_input = gr.Textbox(lines=2, placeholder="Enter Tamil text here...") english_output = gr.Textbox(label="English Translation") translate_button = gr.Button("Translate") with gr.Row(): translate_button.click(translate_tamil_to_english, inputs=tamil_input, outputs=english_output) with gr.Row(): english_paragraph_input = gr.Textbox(lines=5, placeholder="Enter English paragraph here...") summary_output = gr.Textbox(label="Summary") summarize_button = gr.Button("Summarize") summarize_button.click(summarize_english_text, inputs=english_paragraph_input, outputs=summary_output) with gr.Row(): english_text_input = gr.Textbox(lines=2, placeholder="Enter English text for image generation...") image_output = gr.Image(label="Generated Image") generate_button = gr.Button("Generate Image", size="sm") # Make the button smaller generate_button.click(english_text_to_image, inputs=english_text_input, outputs=image_output) app.launch()