File size: 8,988 Bytes
f5faae7 f1b08a8 39950c9 f1b08a8 e027012 f1b08a8 f5faae7 aef1dbe f1b08a8 f5faae7 aef1dbe f1b08a8 f5faae7 aef1dbe f1b08a8 f5faae7 aef1dbe f1b08a8 f5faae7 aef1dbe 2d03034 f1b08a8 f5faae7 aef1dbe f1b08a8 2d03034 f5faae7 aef1dbe 2d03034 f5faae7 aef1dbe 303303b 2d03034 f5faae7 aef1dbe f5faae7 ff76f88 aef1dbe f5faae7 aef1dbe f5faae7 aef1dbe f5faae7 aef1dbe f5faae7 073db2c f5faae7 aef1dbe 303303b 073db2c f5faae7 303303b 073db2c f1b08a8 2d03034 e027012 2d03034 f5faae7 a7bba68 aef1dbe 39950c9 f5faae7 aef1dbe f5faae7 f1b08a8 6676c5a f1b08a8 073db2c f1b08a8 39950c9 303303b 39950c9 f5faae7 f1b08a8 f5faae7 f1b08a8 f5faae7 f1b08a8 39950c9 f1b08a8 aef1dbe 39950c9 f1b08a8 e027012 f1b08a8 e027012 f1b08a8 e027012 f1b08a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import Levenshtein
import evaluate
import pandas as pd
from tqdm import tqdm
import config
from analysis_util import correlations_for_group
from api_wrappers import hf_data_loader
from custom_metrics import gpt_eval
BLEU = evaluate.load('bleu', cache_dir=config.CACHE_DIR)
def bleu_fn(pred, ref, **kwargs):
if "refs" in kwargs:
return BLEU.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["bleu"]
return BLEU.compute(predictions=[pred], references=[ref])["bleu"]
METEOR = evaluate.load('meteor', cache_dir=config.CACHE_DIR)
def meteor_fn(pred, ref, **kwargs):
if "refs" in kwargs:
return METEOR.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["meteor"]
return METEOR.compute(predictions=[pred], references=[ref])["meteor"]
ROUGE = evaluate.load('rouge', cache_dir=config.CACHE_DIR)
def rouge1_fn(pred, ref, **kwargs):
if "refs" in kwargs:
return ROUGE.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["rouge1"]
return ROUGE.compute(predictions=[pred], references=[ref])["rouge1"]
def rouge2_fn(pred, ref, **kwargs):
if "refs" in kwargs:
return ROUGE.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["rouge2"]
return ROUGE.compute(predictions=[pred], references=[ref])["rouge2"]
def rougeL_fn(pred, ref, **kwargs):
if "refs" in kwargs:
return ROUGE.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["rougeL"]
return ROUGE.compute(predictions=[pred], references=[ref])["rougeL"]
BERTSCORE = evaluate.load('bertscore', cache_dir=config.CACHE_DIR)
def bertscore_fn(pred, ref, **kwargs):
if "refs" in kwargs:
return \
BERTSCORE.compute(predictions=[pred], references=[kwargs["refs"]], model_type="distilbert-base-uncased")[
"f1"][0]
return BERTSCORE.compute(predictions=[pred], references=[ref], model_type="distilbert-base-uncased")["f1"][0]
CHRF = evaluate.load("chrf")
def chrf_fn(pred, ref, **kwargs):
if "refs" in kwargs:
return CHRF.compute(predictions=[pred], references=[kwargs["refs"]])["score"]
return CHRF.compute(predictions=[pred], references=[[ref]])["score"]
TER = evaluate.load("ter")
def ter_fn(pred, ref, **kwargs):
if "refs" in kwargs:
scores = [TER.compute(predictions=[pred], references=[[ref]])["score"] for ref in kwargs["refs"]]
return sum(scores) / len(scores)
return TER.compute(predictions=[pred], references=[[ref]])["score"]
def edit_distance_fn(pred, ref, **kwargs):
if "refs" in kwargs:
scores = [Levenshtein.distance(pred, ref) for ref in kwargs["refs"]]
return sum(scores) / len(scores)
return Levenshtein.distance(pred, ref)
def edit_distance_norm_fn(pred, ref, **kwargs):
if "refs" in kwargs:
scores = [Levenshtein.distance(pred, ref) / len(pred) for ref in kwargs["refs"]]
return sum(scores) / len(scores)
return Levenshtein.distance(pred, ref) / len(pred)
def edit_time_fn(pred, ref, **kwargs):
return kwargs["edittime"]
def gptscore_ref_1_fn(pred, ref, **kwargs):
if "refs" in kwargs:
scores = [gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=1) for ref in kwargs["refs"]]
return sum(scores) / len(scores)
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=1)
def gptscore_ref_3_fn(pred, ref, **kwargs):
if "refs" in kwargs:
scores = [gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=3) for ref in kwargs["refs"]]
return sum(scores) / len(scores)
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=3)
def gptscore_ref_5_fn(pred, ref, **kwargs):
if "refs" in kwargs:
scores = [gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=5) for ref in kwargs["refs"]]
return sum(scores) / len(scores)
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=5)
def gptscore_noref_1_fn(pred, ref, **kwargs):
return gpt_eval.compute_noref(prediction=pred, diff=kwargs['diff'], n_requests=1)
def gptscore_noref_3_fn(pred, ref, **kwargs):
return gpt_eval.compute_noref(prediction=pred, diff=kwargs['diff'], n_requests=3)
def gptscore_noref_5_fn(pred, ref, **kwargs):
return gpt_eval.compute_noref(prediction=pred, diff=kwargs['diff'], n_requests=5)
IND_METRICS = {
"editdist": edit_distance_fn,
"editdist-norm": edit_distance_norm_fn,
# "gptscore-ref-1-req": gptscore_ref_1_fn,
# "gptscore-ref-3-req": gptscore_ref_3_fn,
# "gptscore-ref-5-req": gptscore_ref_5_fn,
# "gptscore-noref-1-req": gptscore_noref_1_fn,
# "gptscore-noref-3-req": gptscore_noref_3_fn,
# "gptscore-noref-5-req": gptscore_noref_5_fn,
"bleu": bleu_fn,
"meteor": meteor_fn,
"rouge1": rouge1_fn,
"rouge2": rouge2_fn,
"rougeL": rougeL_fn,
"bertscore": bertscore_fn,
"chrF": chrf_fn,
"ter": ter_fn,
}
AGGR_METRICS = {}
# AGGR_METRICS = IND_METRICS.copy()
# del AGGR_METRICS["gptscore-ref-1-req"]
# del AGGR_METRICS["gptscore-noref-1-req"]
REL_METRICS = {
"editdist": edit_distance_fn,
"editdist-norm": edit_distance_norm_fn,
"edittime": edit_time_fn,
}
def attach_references(df):
reference_df = hf_data_loader.load_full_commit_as_pandas().set_index(["hash", "repo"])[["reference"]]
df = df.set_index(["hash", "repo"])
return df.join(other=reference_df, how="left").reset_index()
def compute_metrics(df):
tqdm.pandas()
def apply_metric_fn_to_row(row, fn, col_pred, col_ref):
return fn(row[col_pred], row[col_ref], edittime=row['edit_time'], diff=str(row['mods']))
for metric in AGGR_METRICS:
print(f"Computing {metric} for the aggregated independent pairs")
values = []
for i, row in tqdm(df.iterrows(), total=len(df)):
others = df[(df["hash"] == row["hash"]) & (df["repo"] == row["repo"]) & (
df["commit_msg_start"] != row["commit_msg_start"]) & (
df["commit_msg_end"] != row["commit_msg_end"])]['commit_msg_end'].to_list()
others.append(row["reference"])
others = list(set(others))
metric_fn = AGGR_METRICS[metric]
values.append(
metric_fn(
row['commit_msg_start'], None, refs=others, edittime=row['edit_time'], diff=str(row['mods'])
)
)
df[f"{metric}_aggr"] = values
for metric in REL_METRICS:
print(f"Computing {metric} for the related pairs")
metric_fn = REL_METRICS[metric]
df[f"{metric}_related"] = df.progress_apply(
lambda row: apply_metric_fn_to_row(row=row,
fn=metric_fn,
col_pred="commit_msg_start",
col_ref="commit_msg_end"),
axis=1
)
for metric in IND_METRICS:
print(f"Computing {metric} for the independent pairs")
metric_fn = IND_METRICS[metric]
df[f"{metric}_independent"] = df.progress_apply(
lambda row: apply_metric_fn_to_row(row=row,
fn=metric_fn,
col_pred="commit_msg_start",
col_ref="reference"),
axis=1
)
for rel_metric in REL_METRICS:
for ind_metric in IND_METRICS:
df[f"rel_{rel_metric}_ind_{ind_metric}_pearson"] = (
df[f"{rel_metric}_related"].corr(df[f"{ind_metric}_independent"], method="pearson"))
df[f"rel_{rel_metric}_ind_{ind_metric}_spearman"] = (
df[f"{rel_metric}_related"].corr(df[f"{ind_metric}_independent"], method="spearman"))
for aggr_metric in AGGR_METRICS:
df[f"rel_{rel_metric}_aggr_{aggr_metric}_pearson"] = (
df[f"{rel_metric}_related"].corr(df[f"{aggr_metric}_aggr"], method="pearson"))
df[f"rel_{rel_metric}_aggr_{aggr_metric}_spearman"] = (
df[f"{rel_metric}_related"].corr(df[f"{aggr_metric}_aggr"], method="spearman"))
return df
def compute_correlations(df: pd.DataFrame):
grouped_df = df.groupby(by=["end_to_start", "start_to_end"])
correlations = grouped_df.apply(correlations_for_group, include_groups=False)
return correlations
def transform(df):
print("Computing metrics")
df = attach_references(df)
df = compute_metrics(df)
correlations_for_groups = compute_correlations(df)
correlations_for_groups.to_csv(config.METRICS_CORRELATIONS_ARTIFACT)
df.to_csv(config.SYNTHETIC_DATASET_ARTIFACT)
print("Done")
return df
def main():
df = pd.read_csv(config.START_TO_END_ARTIFACT, index_col=[0])
transform(df)
if __name__ == '__main__':
main()
|