File size: 3,059 Bytes
13e3243 f1b08a8 7ab7be2 13e3243 f5faae7 13e3243 f5faae7 13e3243 6676c5a 13e3243 6676c5a 13e3243 9d943c1 13e3243 6676c5a 13e3243 6676c5a 13e3243 347f566 13e3243 6676c5a 13e3243 6676c5a 13e3243 6676c5a f1b08a8 6676c5a 13e3243 6676c5a 13e3243 f1b08a8 e027012 f1b08a8 e027012 f1b08a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import pandas as pd
from tqdm import tqdm
import config
import dataset_statistics
from api_wrappers import grazie_wrapper
from generation_steps import examples
GENERATION_MULTIPLIER = 3
REL_DELETIONS_THRESHOLD = 0.75
GENERATION_ATTEMPTS = 3
def build_prompt(prediction, diff):
return f"""A LLM generated a commit message for the following source code changes:
START OF THE SOURCE CODE CHANGES
{diff}
END OF THE SOURCE CODE CHANGES
Here is the message the LLM generated:
START OF THE COMMIT MESSAGE
{prediction}
END OF THE COMMIT MESSAGE
This generated message is not perfect. Your task is to rewrite and improve it.
You have to simulate a human software developer who manually rewrites the LLM-generated commit message,
so the message you print must share some fragments with the generated message.
Your message should be concise.
Follow the Conventional Commits guidelines.
Here are some examples of what you should output:
START OF THE EXAMPLES LIST
{examples.EXAMPLES_START_TO_END}
END OF THE EXAMPLES LIST
Print only the improved commit message's text after the
token "OUTPUT".
OUTPUT"""
def generate_end_msg(start_msg, diff):
prompt = build_prompt(prediction=start_msg, diff=diff)
results = []
for i in range(GENERATION_ATTEMPTS):
end_msg_pred = grazie_wrapper.generate_for_prompt(prompt)
stats = dataset_statistics.get_statistics_for_sample(start_msg=start_msg, end_msg=end_msg_pred, )
if stats["deletions"] < REL_DELETIONS_THRESHOLD:
return end_msg_pred
else:
results.append((stats["deletions"], end_msg_pred))
results.sort()
return results[0][1]
COLS_TO_KEEP = ["hash", "repo", "commit_msg_start", "mods", "session", "end_to_start"]
def print_config():
print(f"NUMBER OF EXAMPLES PER PROMPT = {examples.N_EXAMPLES}")
print(f"GENERATION_MULTIPLIER = {GENERATION_MULTIPLIER}")
print(f"REL_DELETIONS_THRESHOLD = {REL_DELETIONS_THRESHOLD}")
print(f"GENERATION_ATTEMPTS = {GENERATION_ATTEMPTS}")
def transform(df):
print(f"Start -> send synthesis:")
print_config()
df['start_to_end'] = False
generated_data = {
"commit_msg_end": []
}
for col in COLS_TO_KEEP:
generated_data[col] = []
for _, row in tqdm(df.iterrows(), total=len(df)):
for i in range(GENERATION_MULTIPLIER):
commit_msg_end_pred = generate_end_msg(start_msg=row["commit_msg_start"],
diff=row["mods"])
generated_data["commit_msg_end"].append(commit_msg_end_pred)
for col in COLS_TO_KEEP:
generated_data[col].append(row[col])
generated_df = pd.DataFrame.from_dict(generated_data)
generated_df['start_to_end'] = True
result = pd.concat([df, generated_df], ignore_index=True)
result.to_csv(config.START_TO_END_ARTIFACT)
print("Done")
return result
def main():
df = pd.read_csv(config.END_TO_START_ARTIFACT, index_col=[0])
transform(df)
if __name__ == '__main__':
main()
|