import gradio as gr import analysis_util import generate_annotated_diffs import dataset_statistics df_manual = generate_annotated_diffs.manual_data_with_annotated_diffs() df_manual["end_to_start"] = False df_manual["start_to_end"] = False n_diffs_manual = len(df_manual) df_synthetic = generate_annotated_diffs.synthetic_data_with_annotated_diffs() n_diffs_synthetic = len(df_synthetic) def golden(): return df_synthetic[(df_synthetic['end_to_start'] == False) & (df_synthetic['start_to_end'] == False)] def e2s(): return df_synthetic[(df_synthetic['end_to_start'] == True) & (df_synthetic['start_to_end'] == False)] def s2e(): return df_synthetic[(df_synthetic['end_to_start'] == False) & (df_synthetic['start_to_end'] == True)] def e2s_s2e(): return df_synthetic[(df_synthetic['end_to_start'] == True) & (df_synthetic['start_to_end'] == True)] def synthetic(): return df_synthetic[(df_synthetic['end_to_start'] == True) | (df_synthetic['start_to_end'] == True)] STATISTICS = {"manual": dataset_statistics.get_statistics_for_df(golden()), "e2s": dataset_statistics.get_statistics_for_df(e2s()), "s2e": dataset_statistics.get_statistics_for_df(s2e()), "e2s_s2e": dataset_statistics.get_statistics_for_df(e2s_s2e()), "synthetic": dataset_statistics.get_statistics_for_df(synthetic()), "all": dataset_statistics.get_statistics_for_df(df_synthetic)} STATISTICS_T_TEST = dataset_statistics.t_test(STATISTICS, main_group='manual') STAT_NAMES = list(STATISTICS['manual'].keys()) def update_dataset_view(diff_idx, df): diff_idx -= 1 return (df.iloc[diff_idx]['annotated_diff'], df.iloc[diff_idx]['commit_msg_start'], df.iloc[diff_idx]['commit_msg_end'], df.iloc[diff_idx]['session'], str(df.iloc[diff_idx]['end_to_start']), str(df.iloc[diff_idx]['start_to_end']), f"https://github.com/{df.iloc[diff_idx]['repo']}/commit/{df.iloc[diff_idx]['hash']}",) def update_dataset_view_manual(diff_idx): return update_dataset_view(diff_idx, df_manual) def update_dataset_view_synthetic(diff_idx): return update_dataset_view(diff_idx, df_synthetic) force_light_theme_js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'light') { url.searchParams.set('__theme', 'light'); window.location.href = url.href; } } """ if __name__ == '__main__': with gr.Blocks(theme=gr.themes.Soft(), js=force_light_theme_js_func) as application: def dataset_view_tab(n_items): slider = gr.Slider(minimum=1, maximum=n_items, step=1, value=1, label=f"Sample number (total: {n_items})") diff_view = gr.Highlightedtext(combine_adjacent=True, color_map={'+': "green", '-': "red"}) start_view = gr.Textbox(interactive=False, label="Start message", container=True) end_view = gr.Textbox(interactive=False, label="End message", container=True) session_view = gr.Textbox(interactive=False, label="Session", container=True) is_end_to_start_view = gr.Textbox(interactive=False, label="Is generated on the 'end-to-start' synthesis step?", container=True) is_start_to_end_view = gr.Textbox(interactive=False, label="Is generated on the 'start-to-end' synthesis step?", container=True) link_view = gr.Markdown() view = [ diff_view, start_view, end_view, session_view, is_end_to_start_view, is_start_to_end_view, link_view ] return slider, view with gr.Tab("Manual"): slider_manual, view_manual = dataset_view_tab(n_diffs_manual) slider_manual.change(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual) with gr.Tab("Synthetic"): slider_synthetic, view_synthetic = dataset_view_tab(n_diffs_synthetic) slider_synthetic.change(update_dataset_view_synthetic, inputs=slider_synthetic, outputs=view_synthetic) with gr.Tab("Analysis"): def layout_for_statistics(statistics_group_name): gr.Markdown(f"### {statistics_group_name}") stats = STATISTICS[statistics_group_name] gr.Number(label="Count", interactive=False, value=len(stats['deletions_norm']), min_width=00) gr.Number(label="Avg deletions number (rel to the initial msg length)", interactive=False, value=stats['deletions_norm'].mean().item(), precision=3, min_width=00) gr.Number(label="Avg insertions number (rel to the result length)", interactive=False, value=stats['insertions_norm'].mean().item(), precision=3, min_width=00) gr.Number(label="Avg changes number (rel to the initial msg length)", interactive=False, value=stats['changes_norm'].mean().item(), precision=3, min_width=00) gr.Number(label="Avg deletions number", interactive=False, value=stats['deletions'].mean().item(), precision=3, min_width=00) gr.Number(label="Avg insertions number", interactive=False, value=stats['insertions'].mean().item(), precision=3, min_width=00) gr.Number(label="Avg changes number", interactive=False, value=stats['changes'].mean().item(), precision=3, min_width=00) def layout_for_statistics_t_test(statistics_group_name): gr.Markdown(f"### {statistics_group_name}") stats = STATISTICS_T_TEST[statistics_group_name] gr.Number(label="Deletions number (rel to the initial msg length)", interactive=False, value=stats['deletions_norm'], precision=3, min_width=00) gr.Number(label="Insertions number (rel to the result length)", interactive=False, value=stats['insertions_norm'], precision=3, min_width=00) gr.Number(label="Changes number (rel to the initial msg length)", interactive=False, value=stats['changes_norm'], precision=3, min_width=00) gr.Number(label="Deletions number", interactive=False, value=stats['deletions'], precision=3, min_width=00) gr.Number(label="Insertions number", interactive=False, value=stats['insertions'], precision=3, min_width=00) gr.Number(label="Changes number", interactive=False, value=stats['changes'], precision=3, min_width=00) with gr.Row(): with gr.Column(scale=1, min_width=100): layout_for_statistics("manual") with gr.Column(scale=1, min_width=100): layout_for_statistics("e2s") with gr.Column(scale=1, min_width=100): layout_for_statistics("s2e") with gr.Column(scale=1, min_width=100): layout_for_statistics("e2s_s2e") with gr.Column(scale=1, min_width=100): layout_for_statistics("synthetic") with gr.Column(scale=1, min_width=100): layout_for_statistics("all") # gr.Markdown(f"### Student t-test (p-value)") # with gr.Row(): # with gr.Column(scale=1, min_width=100): # layout_for_statistics_t_test("manual") # with gr.Column(scale=1, min_width=100): # layout_for_statistics_t_test("e2s") # with gr.Column(scale=1, min_width=100): # layout_for_statistics_t_test("s2e") # with gr.Column(scale=1, min_width=100): # layout_for_statistics_t_test("e2s_s2e") # with gr.Column(scale=1, min_width=100): # layout_for_statistics_t_test("synthetic") # with gr.Column(scale=1, min_width=100): # layout_for_statistics_t_test("all") with gr.Row(): with gr.Column(scale=1): for stat_name in filter(lambda s: "_norm" not in s, STAT_NAMES): chart = dataset_statistics.build_plotly_chart( stat_golden=STATISTICS['manual'][stat_name], stat_e2s=STATISTICS['e2s'][stat_name], stat_s2e=STATISTICS['s2e'][stat_name], stat_e2s_s2e=STATISTICS['e2s_s2e'][stat_name], stat_name=stat_name ) gr.Plot(value=chart) with gr.Column(scale=1): with gr.Column(scale=1): for stat_name in filter(lambda s: "_norm" in s, STAT_NAMES): chart = dataset_statistics.build_plotly_chart( stat_golden=STATISTICS['manual'][stat_name], stat_e2s=STATISTICS['e2s'][stat_name], stat_s2e=STATISTICS['s2e'][stat_name], stat_e2s_s2e=STATISTICS['e2s_s2e'][stat_name], stat_name=stat_name ) gr.Plot(value=chart) gr.Markdown(f"### Reference-only correlations") gr.Markdown(value=analysis_util.get_correlations_for_groups(df_synthetic, right_side="ind").to_markdown()) gr.Markdown(f"### Aggregated correlations") gr.Markdown(value=analysis_util.get_correlations_for_groups(df_synthetic, right_side="aggr").to_markdown()) application.load(update_dataset_view_manual, inputs=slider_manual, outputs=view_manual) application.load(update_dataset_view_synthetic, inputs=slider_synthetic, outputs=view_synthetic) application.launch()