Spaces:
Running
Running
File size: 3,123 Bytes
a0a2a37 5490f7a a0a2a37 1569e58 a0a2a37 1f48633 a0a2a37 16c3a47 a9f2449 a0a2a37 0983653 a0a2a37 16c3a47 a0a2a37 6584f0f a0a2a37 db44c43 a0a2a37 5beb3d6 a0a2a37 16c3a47 a0a2a37 6584f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch
from torch import nn
from model import create_resnet50_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
class_names = ['CRVO',
'Choroidal Nevus',
'Diabetic Retinopathy',
'Laser Spots',
'Macular Degeneration',
'Macular Hole',
'Myelinated Nerve Fiber',
'Normal',
'Pathological Mypoia',
'Retinitis Pigmentosa']
### 2. Model and transforms preparation ###
# Create ResNet50 model
resnet50, resnet50_transforms = create_resnet50_model(
num_classes=len(class_names), # actual value would also work
)
resnet50.fc = nn.Linear(2048, 10)
# Load saved weights
resnet50.load_state_dict(
torch.load(
f="pretrained_resnet50_feature_extractor_drappcompressed.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
### 3. Predict function ###
# Create predict function
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img = resnet50_transforms(img).unsqueeze(0)
# Put model into evaluation mode and turn on inference mode
resnet50.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(resnet50(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
### 4. Gradio app ###
# Create title, description and article strings
#title = "DeepFundus 👀"
#description = "A ResNet50 feature extractor computer vision model to classify funduscopic images."
#article = "Created with the help from [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
# Create examples list from "examples/" directory
examples=example_list)
#title=title,
#description=description,
#article=article)
# Launch the demo!
demo.launch()
|