File size: 3,123 Bytes
a0a2a37
 
 
 
 
5490f7a
a0a2a37
 
 
 
 
 
1569e58
a0a2a37
 
 
1f48633
a0a2a37
 
16c3a47
a9f2449
a0a2a37
 
 
 
 
 
 
0983653
a0a2a37
16c3a47
a0a2a37
 
 
 
 
 
 
6584f0f
a0a2a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db44c43
 
 
a0a2a37
 
 
 
 
 
 
5beb3d6
a0a2a37
 
16c3a47
 
 
 
a0a2a37
 
6584f0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
### 1. Imports and class names setup ### 
import gradio as gr
import os
import torch

from torch import nn
from model import create_resnet50_model
from timeit import default_timer as timer
from typing import Tuple, Dict

# Setup class names
class_names = ['CRVO',
  'Choroidal Nevus',
  'Diabetic Retinopathy',
  'Laser Spots',
  'Macular Degeneration',
  'Macular Hole',
  'Myelinated Nerve Fiber',
  'Normal',
  'Pathological Mypoia',
  'Retinitis Pigmentosa']

### 2. Model and transforms preparation ###

# Create ResNet50 model
resnet50, resnet50_transforms = create_resnet50_model(
    num_classes=len(class_names), # actual value would also work
)
resnet50.fc = nn.Linear(2048, 10)

# Load saved weights
resnet50.load_state_dict(
    torch.load(
        f="pretrained_resnet50_feature_extractor_drappcompressed.pth",
        map_location=torch.device("cpu"),  # load to CPU
    )
)


### 3. Predict function ###

# Create predict function
def predict(img) -> Tuple[Dict, float]:
    """Transforms and performs a prediction on img and returns prediction and time taken.
    """
    # Start the timer
    start_time = timer()
    
    # Transform the target image and add a batch dimension
    img = resnet50_transforms(img).unsqueeze(0)
    
    # Put model into evaluation mode and turn on inference mode
    resnet50.eval()
    with torch.inference_mode():
        # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
        pred_probs = torch.softmax(resnet50(img), dim=1)
    
    # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
    pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
    
    # Calculate the prediction time
    pred_time = round(timer() - start_time, 5)
    
    # Return the prediction dictionary and prediction time 
    return pred_labels_and_probs, pred_time

### 4. Gradio app ###

# Create title, description and article strings
#title = "DeepFundus 👀"
#description = "A ResNet50 feature extractor computer vision model to classify funduscopic images."
#article = "Created with the help from [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."

# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]

# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
                    inputs=gr.Image(type="pil"), # what are the inputs?
                    outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
                             gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
                    # Create examples list from "examples/" directory
                    examples=example_list) 
                    #title=title,
                    #description=description,
                    #article=article)

# Launch the demo!
demo.launch()