import torch import torchvision from torch import nn def create_resnet50_model(num_classes:int=8, # 4 seed:int=42): """Creates an ResNet50 feature extractor model and transforms. Args: num_classes (int, optional): number of classes in the classifier head. Defaults to 3. seed (int, optional): random seed value. Defaults to 42. Returns: model (torch.nn.Module): ResNet50 feature extractor model. transforms (torchvision.transforms): ResNet50 image transforms. """ # 1, 2, 3. Create ResNet50 pretrained weights, transforms and model weights = torchvision.models.ResNet50_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.resnet50(weights=weights) # 4. Freeze all layers in base model for param in model.parameters(): param.requires_grad = True # Set to False for model's other than ResNet # 5. Change classifier head with random seed for reproducibility torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=2048 , out_features=num_classes), # If using EffnetB2 in_features = 1408, EffnetB0 in_features = 1280, if ResNet50 in_features = 2048 ) return model, transforms