Spaces:
Runtime error
Runtime error
File size: 8,039 Bytes
a845f24 3c85855 a845f24 0cfc467 f97e6ec 0cfc467 a845f24 c64dba3 a845f24 f97e6ec a845f24 f97e6ec c64dba3 a845f24 0cfc467 a845f24 0cfc467 a845f24 3c85855 c64dba3 3c85855 c64dba3 3c85855 a845f24 0cfc467 a845f24 4e39876 a845f24 4e39876 a845f24 4e39876 a845f24 4e39876 c64dba3 a845f24 72ad2e5 a845f24 0cfc467 c64dba3 a845f24 3c85855 a845f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from typing import List, Tuple
from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.streamers import TextIteratorStreamer
import torch
from project_settings import project_path
def greet(question: str, history: List[Tuple[str, str]]):
answer = "Hello " + question + "!"
result = history + [(question, answer)]
return result
model_map: dict = dict()
def init_model(pretrained_model_name_or_path: str):
device: str = "cuda" if torch.cuda.is_available() else "cpu"
global model_map
if pretrained_model_name_or_path not in model_map.keys():
# clear
for k1, v1 in model_map.items():
for k2, v2 in v1.items():
del v2
model_map = dict()
# build model
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
device_map="auto",
offload_folder="./offload",
offload_state_dict=True,
# load_in_4bit=True,
)
model = model.to(device)
model = model.bfloat16().eval()
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path,
trust_remote_code=True,
# llama不支持fast
use_fast=False if model.config.model_type == "llama" else True,
padding_side="left"
)
# QWenTokenizer比较特殊, pad_token_id, bos_token_id, eos_token_id 均 为None. eod_id对应的token为<|endoftext|>
if tokenizer.__class__.__name__ == "QWenTokenizer":
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
model_map[pretrained_model_name_or_path] = {
"model": model,
"tokenizer": tokenizer,
}
else:
model = model_map[pretrained_model_name_or_path]["model"]
tokenizer = model_map[pretrained_model_name_or_path]["tokenizer"]
return model, tokenizer
def chat_with_llm_non_stream(question: str,
history: List[Tuple[str, str]],
pretrained_model_name_or_path: str,
max_new_tokens: int, top_p: float, temperature: float, repetition_penalty: float,
history_max_len: int,
):
device: str = "cuda" if torch.cuda.is_available() else "cpu"
model, tokenizer = init_model(pretrained_model_name_or_path)
text_list = list()
for pair in history:
text_list.extend(pair)
text_list.append(question)
text_encoded = tokenizer.__call__(text_list, add_special_tokens=False)
batch_input_ids = text_encoded["input_ids"]
input_ids = [tokenizer.bos_token_id]
for input_ids_ in batch_input_ids:
input_ids.extend(input_ids_)
input_ids.append(tokenizer.eos_token_id)
input_ids = torch.tensor([input_ids], dtype=torch.long)
input_ids = input_ids[:, -history_max_len:].to(device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id
)
outputs = outputs.tolist()[0][len(input_ids[0]):]
answer = tokenizer.decode(outputs)
answer = answer.strip().replace(tokenizer.eos_token, "").strip()
result = history + [(question, answer)]
return result
def chat_with_llm_streaming(question: str,
history: List[Tuple[str, str]],
pretrained_model_name_or_path: str,
max_new_tokens: int, top_p: float, temperature: float, repetition_penalty: float,
history_max_len: int,
):
device: str = "cuda" if torch.cuda.is_available() else "cpu"
model, tokenizer = init_model(pretrained_model_name_or_path)
text_list = list()
for pair in history:
text_list.extend(pair)
text_list.append(question)
text_encoded = tokenizer.__call__(text_list, add_special_tokens=False)
batch_input_ids = text_encoded["input_ids"]
input_ids = [tokenizer.bos_token_id]
for input_ids_ in batch_input_ids:
input_ids.extend(input_ids_)
input_ids.append(tokenizer.eos_token_id)
input_ids = torch.tensor([input_ids], dtype=torch.long)
input_ids = input_ids[:, -history_max_len:].to(device)
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = dict(
inputs=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
answer = ""
for output_ in streamer:
output_ = output_.replace(question, "")
output_ = output_.replace(tokenizer.eos_token, "")
answer += output_
result = [(question, answer)]
yield history + result
def main():
description = """
chat llm
"""
with gr.Blocks() as blocks:
gr.Markdown(value=description)
chatbot = gr.Chatbot([], elem_id="chatbot", height=400)
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(show_label=False, placeholder="Enter text and press enter", container=False)
with gr.Column(scale=1):
submit_button = gr.Button("💬Submit")
with gr.Column(scale=1):
clear_button = gr.Button(
'🗑️Clear',
variant='secondary',
)
with gr.Row():
with gr.Column(scale=1):
max_new_tokens = gr.Slider(minimum=0, maximum=512, value=512, step=1, label="max_new_tokens")
with gr.Column(scale=1):
top_p = gr.Slider(minimum=0, maximum=1, value=0.85, step=0.01, label="top_p")
with gr.Column(scale=1):
temperature = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.01, label="temperature")
with gr.Column(scale=1):
repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.2, step=0.01, label="repetition_penalty")
with gr.Column(scale=1):
history_max_len = gr.Slider(minimum=0, maximum=4096, value=1024, step=1, label="history_max_len")
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Dropdown(
choices=[
"Qwen/Qwen-7B-Chat",
"THUDM/chatglm2-6b",
"baichuan-inc/Baichuan2-7B-Chat",
],
value="Qwen/Qwen-7B-Chat",
label="model_name",
)
gr.Examples(examples=["你好"], inputs=text_box)
inputs = [
text_box, chatbot, model_name,
max_new_tokens, top_p, temperature, repetition_penalty,
history_max_len
]
outputs = [
chatbot
]
text_box.submit(chat_with_llm_streaming, inputs, outputs)
submit_button.click(chat_with_llm_streaming, inputs, outputs)
clear_button.click(
fn=lambda: ('', ''),
outputs=[text_box, chatbot],
queue=False,
api_name=False,
)
blocks.queue().launch()
return
if __name__ == '__main__':
main()
|