File size: 8,039 Bytes
a845f24
 
 
 
 
 
 
3c85855
a845f24
 
 
 
 
 
 
 
 
 
 
0cfc467
 
 
f97e6ec
 
 
0cfc467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a845f24
 
 
 
c64dba3
a845f24
f97e6ec
 
 
a845f24
f97e6ec
 
 
 
 
 
 
 
 
 
 
 
c64dba3
 
a845f24
 
 
 
 
 
 
 
 
 
 
 
0cfc467
 
a845f24
0cfc467
 
a845f24
 
3c85855
 
 
 
c64dba3
3c85855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64dba3
 
3c85855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a845f24
 
 
 
 
 
0cfc467
a845f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e39876
a845f24
4e39876
a845f24
4e39876
a845f24
4e39876
c64dba3
 
a845f24
 
72ad2e5
 
 
 
 
 
 
 
 
 
a845f24
 
 
 
0cfc467
c64dba3
a845f24
 
 
 
3c85855
 
a845f24
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from typing import List, Tuple
from threading import Thread

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.streamers import TextIteratorStreamer
import torch

from project_settings import project_path


def greet(question: str, history: List[Tuple[str, str]]):
    answer = "Hello " + question + "!"
    result = history + [(question, answer)]
    return result


model_map: dict = dict()


def init_model(pretrained_model_name_or_path: str):
    device: str = "cuda" if torch.cuda.is_available() else "cpu"

    global model_map
    if pretrained_model_name_or_path not in model_map.keys():
        # clear
        for k1, v1 in model_map.items():
            for k2, v2 in v1.items():
                del v2
        model_map = dict()

        # build model
        model = AutoModelForCausalLM.from_pretrained(
            pretrained_model_name_or_path,
            trust_remote_code=True,
            low_cpu_mem_usage=True,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            offload_folder="./offload",
            offload_state_dict=True,
            # load_in_4bit=True,
        )
        model = model.to(device)
        model = model.bfloat16().eval()

        tokenizer = AutoTokenizer.from_pretrained(
            pretrained_model_name_or_path,
            trust_remote_code=True,
            # llama不支持fast
            use_fast=False if model.config.model_type == "llama" else True,
            padding_side="left"
        )

        # QWenTokenizer比较特殊, pad_token_id, bos_token_id, eos_token_id 均 为None. eod_id对应的token为<|endoftext|>
        if tokenizer.__class__.__name__ == "QWenTokenizer":
            tokenizer.pad_token_id = tokenizer.eod_id
            tokenizer.bos_token_id = tokenizer.eod_id
            tokenizer.eos_token_id = tokenizer.eod_id

        model_map[pretrained_model_name_or_path] = {
            "model": model,
            "tokenizer": tokenizer,
        }
    else:
        model = model_map[pretrained_model_name_or_path]["model"]
        tokenizer = model_map[pretrained_model_name_or_path]["tokenizer"]
    return model, tokenizer


def chat_with_llm_non_stream(question: str,
                             history: List[Tuple[str, str]],
                             pretrained_model_name_or_path: str,
                             max_new_tokens: int, top_p: float, temperature: float, repetition_penalty: float,
                             history_max_len: int,
                             ):
    device: str = "cuda" if torch.cuda.is_available() else "cpu"

    model, tokenizer = init_model(pretrained_model_name_or_path)

    text_list = list()
    for pair in history:
        text_list.extend(pair)
    text_list.append(question)

    text_encoded = tokenizer.__call__(text_list, add_special_tokens=False)
    batch_input_ids = text_encoded["input_ids"]

    input_ids = [tokenizer.bos_token_id]
    for input_ids_ in batch_input_ids:
        input_ids.extend(input_ids_)
        input_ids.append(tokenizer.eos_token_id)
    input_ids = torch.tensor([input_ids], dtype=torch.long)
    input_ids = input_ids[:, -history_max_len:].to(device)

    with torch.no_grad():
        outputs = model.generate(
            input_ids=input_ids,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            eos_token_id=tokenizer.eos_token_id
        )
        outputs = outputs.tolist()[0][len(input_ids[0]):]
        answer = tokenizer.decode(outputs)
        answer = answer.strip().replace(tokenizer.eos_token, "").strip()

    result = history + [(question, answer)]
    return result


def chat_with_llm_streaming(question: str,
                            history: List[Tuple[str, str]],
                            pretrained_model_name_or_path: str,
                            max_new_tokens: int, top_p: float, temperature: float, repetition_penalty: float,
                            history_max_len: int,
                            ):
    device: str = "cuda" if torch.cuda.is_available() else "cpu"

    model, tokenizer = init_model(pretrained_model_name_or_path)

    text_list = list()
    for pair in history:
        text_list.extend(pair)
    text_list.append(question)

    text_encoded = tokenizer.__call__(text_list, add_special_tokens=False)
    batch_input_ids = text_encoded["input_ids"]

    input_ids = [tokenizer.bos_token_id]
    for input_ids_ in batch_input_ids:
        input_ids.extend(input_ids_)
        input_ids.append(tokenizer.eos_token_id)
    input_ids = torch.tensor([input_ids], dtype=torch.long)
    input_ids = input_ids[:, -history_max_len:].to(device)

    streamer = TextIteratorStreamer(tokenizer=tokenizer)

    generation_kwargs = dict(
        inputs=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id,
        streamer=streamer,
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    answer = ""
    for output_ in streamer:
        output_ = output_.replace(question, "")
        output_ = output_.replace(tokenizer.eos_token, "")

        answer += output_

        result = [(question, answer)]

        yield history + result


def main():
    description = """
    chat llm
    """

    with gr.Blocks() as blocks:
        gr.Markdown(value=description)

        chatbot = gr.Chatbot([], elem_id="chatbot", height=400)
        with gr.Row():
            with gr.Column(scale=4):
                text_box = gr.Textbox(show_label=False, placeholder="Enter text and press enter", container=False)
            with gr.Column(scale=1):
                submit_button = gr.Button("💬Submit")
            with gr.Column(scale=1):
                clear_button = gr.Button(
                    '🗑️Clear',
                    variant='secondary',
                )

        with gr.Row():
            with gr.Column(scale=1):
                max_new_tokens = gr.Slider(minimum=0, maximum=512, value=512, step=1, label="max_new_tokens")
            with gr.Column(scale=1):
                top_p = gr.Slider(minimum=0, maximum=1, value=0.85, step=0.01, label="top_p")
            with gr.Column(scale=1):
                temperature = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.01, label="temperature")
            with gr.Column(scale=1):
                repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.2, step=0.01, label="repetition_penalty")
            with gr.Column(scale=1):
                history_max_len = gr.Slider(minimum=0, maximum=4096, value=1024, step=1, label="history_max_len")

        with gr.Row():
            with gr.Column(scale=1):
                model_name = gr.Dropdown(
                    choices=[
                        "Qwen/Qwen-7B-Chat",
                        "THUDM/chatglm2-6b",
                        "baichuan-inc/Baichuan2-7B-Chat",
                    ],
                    value="Qwen/Qwen-7B-Chat",
                    label="model_name",
                )
        gr.Examples(examples=["你好"], inputs=text_box)

        inputs = [
            text_box, chatbot, model_name,
            max_new_tokens, top_p, temperature, repetition_penalty,
            history_max_len
        ]
        outputs = [
            chatbot
        ]
        text_box.submit(chat_with_llm_streaming, inputs, outputs)
        submit_button.click(chat_with_llm_streaming, inputs, outputs)
        clear_button.click(
            fn=lambda: ('', ''),
            outputs=[text_box, chatbot],
            queue=False,
            api_name=False,
        )

    blocks.queue().launch()

    return


if __name__ == '__main__':
    main()