File size: 4,794 Bytes
a845f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from typing import List, Tuple
from threading import Thread

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

from project_settings import project_path


def greet(question: str, history: List[Tuple[str, str]]):
    answer = "Hello " + question + "!"
    result = history + [(question, answer)]
    return result


def chat_with_llm_non_stream(question: str,
                             history: List[Tuple[str, str]],
                             pretrained_model_name_or_path: str,
                             max_new_tokens: int, top_p: float, temperature: float, repetition_penalty: float,
                             ):
    device = "cuda" if torch.cuda.is_available() else "cpu"

    model = AutoModelForCausalLM.from_pretrained(
        pretrained_model_name_or_path,
        trust_remote_code=True,
        low_cpu_mem_usage=True,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        offload_folder="./offload",
        offload_state_dict=True,
        # load_in_4bit=True,
    )
    model = model.to(device)
    model = model.bfloat16().eval()

    tokenizer = AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path,
        trust_remote_code=True,
        # llama不支持fast
        use_fast=False if model.config.model_type == "llama" else True,
        padding_side="left"
    )

    # QWenTokenizer比较特殊, pad_token_id, bos_token_id, eos_token_id 均 为None. eod_id对应的token为<|endoftext|>
    if tokenizer.__class__.__name__ == "QWenTokenizer":
        tokenizer.pad_token_id = tokenizer.eod_id
        tokenizer.bos_token_id = tokenizer.eod_id
        tokenizer.eos_token_id = tokenizer.eod_id

    input_ids = tokenizer(
        question,
        return_tensors="pt",
        add_special_tokens=False,
    ).input_ids.to(device)
    bos_token_id = torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).to(device)
    eos_token_id = torch.tensor([[tokenizer.eos_token_id]], dtype=torch.long).to(device)
    input_ids = torch.concat([bos_token_id, input_ids, eos_token_id], dim=1)

    with torch.no_grad():
        outputs = model.generate(
            input_ids=input_ids,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            eos_token_id=tokenizer.eos_token_id
        )
        outputs = outputs.tolist()[0][len(input_ids[0]):]
        response = tokenizer.decode(outputs)
        response = response.strip().replace(tokenizer.eos_token, "").strip()

    return


def main():
    description = """
    chat llm
    """

    with gr.Blocks() as blocks:
        gr.Markdown(value="gradio demo")

        chatbot = gr.Chatbot([], elem_id="chatbot", height=400)
        with gr.Row():
            with gr.Column(scale=4):
                text_box = gr.Textbox(show_label=False, placeholder="Enter text and press enter", container=False)
            with gr.Column(scale=1):
                submit_button = gr.Button("💬Submit")
            with gr.Column(scale=1):
                clear_button = gr.Button(
                    '🗑️Clear',
                    variant='secondary',
                )

        with gr.Row():
            with gr.Column(scale=1):
                max_new_tokens = gr.Slider(minimum=0, maximum=512, value=512, step=1, label="max_new_tokens"),
            with gr.Column(scale=1):
                top_p = gr.Slider(minimum=0, maximum=1, value=0.85, step=0.01, label="top_p"),
            with gr.Column(scale=1):
                temperature = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.01, label="temperature"),
            with gr.Column(scale=1):
                repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.2, step=0.01, label="repetition_penalty"),

        with gr.Row():
            model_name = gr.Dropdown(choices=["Qwen/Qwen-7B-Chat"],
                                     value="Qwen/Qwen-7B-Chat",
                                     label="model_name",
                                     )
        gr.Examples(examples=["你好"], inputs=text_box)

        inputs = [
            text_box, chatbot, model_name,
            max_new_tokens, top_p, temperature, repetition_penalty
        ]
        outputs = [
            chatbot
        ]
        text_box.submit(chat_with_llm_non_stream, inputs, outputs)
        submit_button.click(chat_with_llm_non_stream, inputs, outputs)
        clear_button.click(
            fn=lambda: ('', ''),
            outputs=[text_box, chatbot],
            queue=False,
            api_name=False,
        )

    blocks.queue().launch()

    return


if __name__ == '__main__':
    main()