Spaces:
Running
Running
File size: 10,193 Bytes
52f1bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import io
from typing import List
import pypdfium2
import streamlit as st
from pypdfium2 import PdfiumError
from surya.detection import batch_text_detection
from surya.input.pdflines import get_page_text_lines, get_table_blocks
from surya.layout import batch_layout_detection
from surya.model.detection.model import load_model, load_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from surya.model.ordering.processor import load_processor as load_order_processor
from surya.model.ordering.model import load_model as load_order_model
from surya.model.table_rec.model import load_model as load_table_model
from surya.model.table_rec.processor import load_processor as load_table_processor
from surya.ordering import batch_ordering
from surya.postprocessing.heatmap import draw_polys_on_image, draw_bboxes_on_image
from surya.ocr import run_ocr
from surya.postprocessing.text import draw_text_on_image
from PIL import Image
from surya.languages import CODE_TO_LANGUAGE
from surya.input.langs import replace_lang_with_code
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult, TableResult
from surya.settings import settings
from surya.tables import batch_table_recognition
from surya.postprocessing.util import rescale_bboxes, rescale_bbox
@st.cache_resource()
def load_det_cached():
checkpoint = settings.DETECTOR_MODEL_CHECKPOINT
return load_model(checkpoint=checkpoint), load_processor(checkpoint=checkpoint)
@st.cache_resource()
def load_rec_cached():
return load_rec_model(), load_rec_processor()
@st.cache_resource()
def load_layout_cached():
return load_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT), load_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT)
@st.cache_resource()
def load_order_cached():
return load_order_model(), load_order_processor()
@st.cache_resource()
def load_table_cached():
return load_table_model(), load_table_processor()
def text_detection(img) -> (Image.Image, TextDetectionResult):
pred = batch_text_detection([img], det_model, det_processor)[0]
polygons = [p.polygon for p in pred.bboxes]
det_img = draw_polys_on_image(polygons, img.copy())
return det_img, pred
def layout_detection(img) -> (Image.Image, LayoutResult):
_, det_pred = text_detection(img)
pred = batch_layout_detection([img], layout_model, layout_processor, [det_pred])[0]
polygons = [p.polygon for p in pred.bboxes]
labels = [p.label for p in pred.bboxes]
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels, label_font_size=18)
return layout_img, pred
def order_detection(img) -> (Image.Image, OrderResult):
_, layout_pred = layout_detection(img)
bboxes = [l.bbox for l in layout_pred.bboxes]
pred = batch_ordering([img], [bboxes], order_model, order_processor)[0]
polys = [l.polygon for l in pred.bboxes]
positions = [str(l.position) for l in pred.bboxes]
order_img = draw_polys_on_image(polys, img.copy(), labels=positions, label_font_size=18)
return order_img, pred
def table_recognition(img, highres_img, filepath, page_idx: int, use_pdf_boxes: bool, skip_table_detection: bool) -> (Image.Image, List[TableResult]):
if skip_table_detection:
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])]
table_imgs = [highres_img]
else:
_, layout_pred = layout_detection(img)
layout_tables_lowres = [l.bbox for l in layout_pred.bboxes if l.label == "Table"]
table_imgs = []
layout_tables = []
for tb in layout_tables_lowres:
highres_bbox = rescale_bbox(tb, img.size, highres_img.size)
table_imgs.append(
highres_img.crop(highres_bbox)
)
layout_tables.append(highres_bbox)
try:
page_text = get_page_text_lines(filepath, [page_idx], [highres_img.size])[0]
table_bboxes = get_table_blocks(layout_tables, page_text, highres_img.size)
except PdfiumError:
# This happens when we try to get text from an image
table_bboxes = [[] for _ in layout_tables]
if not use_pdf_boxes or any(len(tb) == 0 for tb in table_bboxes):
det_results = batch_text_detection(table_imgs, det_model, det_processor)
table_bboxes = [[{"bbox": tb.bbox, "text": None} for tb in det_result.bboxes] for det_result in det_results]
table_preds = batch_table_recognition(table_imgs, table_bboxes, table_model, table_processor)
table_img = img.copy()
for results, table_bbox in zip(table_preds, layout_tables):
adjusted_bboxes = []
labels = []
for item in results.cells:
adjusted_bboxes.append([
(item.bbox[0] + table_bbox[0]),
(item.bbox[1] + table_bbox[1]),
(item.bbox[2] + table_bbox[0]),
(item.bbox[3] + table_bbox[1])
])
labels.append(f"{item.row_id} / {item.col_id}")
table_img = draw_bboxes_on_image(adjusted_bboxes, highres_img, labels=labels, label_font_size=18)
return table_img, table_preds
# Function for OCR
def ocr(img, highres_img, langs: List[str]) -> (Image.Image, OCRResult):
replace_lang_with_code(langs)
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor, highres_images=[highres_img])[0]
bboxes = [l.bbox for l in img_pred.text_lines]
text = [l.text for l in img_pred.text_lines]
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs)
return rec_img, img_pred
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=settings.IMAGE_DPI):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
st.set_page_config(layout="wide")
col1, col2 = st.columns([.5, .5])
det_model, det_processor = load_det_cached()
rec_model, rec_processor = load_rec_cached()
layout_model, layout_processor = load_layout_cached()
order_model, order_processor = load_order_cached()
table_model, table_processor = load_table_cached()
st.markdown("""
# Surya OCR Demo
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages.
Notes:
- This works best on documents with printed text.
- Preprocessing the image (e.g. increasing contrast) can improve results.
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease).
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list.
Find the project [here](https://github.com/VikParuchuri/surya).
""")
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=[], max_selections=4, help="Select the languages in the image (if known) to improve OCR accuracy. Optional.")
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number, settings.IMAGE_DPI)
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES)
else:
pil_image = Image.open(in_file).convert("RGB")
pil_image_highres = pil_image
page_number = None
text_det = st.sidebar.button("Run Text Detection")
text_rec = st.sidebar.button("Run OCR")
layout_det = st.sidebar.button("Run Layout Analysis")
order_det = st.sidebar.button("Run Reading Order")
table_rec = st.sidebar.button("Run Table Rec")
use_pdf_boxes = st.sidebar.checkbox("PDF table boxes", value=True, help="Table recognition only: Use the bounding boxes from the PDF file vs text detection model.")
skip_table_detection = st.sidebar.checkbox("Skip table detection", value=False, help="Table recognition only: Skip table detection and treat the whole image/page as a table.")
if pil_image is None:
st.stop()
# Run Text Detection
if text_det:
det_img, pred = text_detection(pil_image)
with col1:
st.image(det_img, caption="Detected Text", use_column_width=True)
st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True)
# Run layout
if layout_det:
layout_img, pred = layout_detection(pil_image)
with col1:
st.image(layout_img, caption="Detected Layout", use_column_width=True)
st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True)
# Run OCR
if text_rec:
rec_img, pred = ocr(pil_image, pil_image_highres, languages)
with col1:
st.image(rec_img, caption="OCR Result", use_column_width=True)
json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"])
with json_tab:
st.json(pred.model_dump(), expanded=True)
with text_tab:
st.text("\n".join([p.text for p in pred.text_lines]))
if order_det:
order_img, pred = order_detection(pil_image)
with col1:
st.image(order_img, caption="Reading Order", use_column_width=True)
st.json(pred.model_dump(), expanded=True)
if table_rec:
table_img, pred = table_recognition(pil_image, pil_image_highres, in_file, page_number - 1 if page_number else None, use_pdf_boxes, skip_table_detection)
with col1:
st.image(table_img, caption="Table Recognition", use_column_width=True)
st.json([p.model_dump() for p in pred], expanded=True)
with col2:
st.image(pil_image, caption="Uploaded Image", use_column_width=True) |