Spaces:
Running
Running
File size: 10,892 Bytes
52f1bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from collections import defaultdict
from copy import deepcopy
from typing import List, Dict
import torch
from PIL import Image
from surya.model.ordering.encoderdecoder import OrderVisionEncoderDecoderModel
from surya.schema import TableResult, TableCell, Bbox
from surya.settings import settings
from tqdm import tqdm
import numpy as np
from surya.model.table_rec.config import SPECIAL_TOKENS
def get_batch_size():
batch_size = settings.TABLE_REC_BATCH_SIZE
if batch_size is None:
batch_size = 8
if settings.TORCH_DEVICE_MODEL == "mps":
batch_size = 8
if settings.TORCH_DEVICE_MODEL == "cuda":
batch_size = 64
return batch_size
def sort_bboxes(bboxes, tolerance=1):
vertical_groups = {}
for block in bboxes:
group_key = round(block["bbox"][1] / tolerance) * tolerance
if group_key not in vertical_groups:
vertical_groups[group_key] = []
vertical_groups[group_key].append(block)
# Sort each group horizontally and flatten the groups into a single list
sorted_page_blocks = []
for _, group in sorted(vertical_groups.items()):
sorted_group = sorted(group, key=lambda x: x["bbox"][0])
sorted_page_blocks.extend(sorted_group)
return sorted_page_blocks
def is_rotated(rows, cols):
# Determine if the table is rotated by looking at row and column width / height ratios
# Rows should have a >1 ratio, cols <1
widths = sum([r.width for r in rows])
heights = sum([c.height for c in rows]) + 1
r_ratio = widths / heights
widths = sum([c.width for c in cols])
heights = sum([r.height for r in cols]) + 1
c_ratio = widths / heights
return r_ratio * 2 < c_ratio
def batch_table_recognition(images: List, table_cells: List[List[Dict]], model: OrderVisionEncoderDecoderModel, processor, batch_size=None) -> List[TableResult]:
assert all([isinstance(image, Image.Image) for image in images])
assert len(images) == len(table_cells)
if batch_size is None:
batch_size = get_batch_size()
output_order = []
for i in tqdm(range(0, len(images), batch_size), desc="Recognizing tables"):
batch_table_cells = deepcopy(table_cells[i:i+batch_size])
batch_table_cells = [sort_bboxes(page_bboxes) for page_bboxes in batch_table_cells] # Sort bboxes before passing in
batch_list_bboxes = [[block["bbox"] for block in page] for page in batch_table_cells]
batch_images = images[i:i+batch_size]
batch_images = [image.convert("RGB") for image in batch_images] # also copies the images
current_batch_size = len(batch_images)
orig_sizes = [image.size for image in batch_images]
model_inputs = processor(images=batch_images, boxes=deepcopy(batch_list_bboxes))
batch_pixel_values = model_inputs["pixel_values"]
batch_bboxes = model_inputs["input_boxes"]
batch_bbox_mask = model_inputs["input_boxes_mask"]
batch_bbox_counts = model_inputs["input_boxes_counts"]
batch_bboxes = torch.from_numpy(np.array(batch_bboxes, dtype=np.int32)).to(model.device)
batch_bbox_mask = torch.from_numpy(np.array(batch_bbox_mask, dtype=np.int32)).to(model.device)
batch_pixel_values = torch.tensor(np.array(batch_pixel_values), dtype=model.dtype).to(model.device)
batch_bbox_counts = torch.tensor(np.array(batch_bbox_counts), dtype=torch.long).to(model.device)
# Setup inputs for the decoder
batch_decoder_input = [[[model.config.decoder.bos_token_id] * 5] for _ in range(current_batch_size)]
batch_decoder_input = torch.tensor(np.stack(batch_decoder_input, axis=0), dtype=torch.long, device=model.device)
inference_token_count = batch_decoder_input.shape[1]
max_tokens = min(batch_bbox_counts[:, 1].max().item(), settings.TABLE_REC_MAX_BOXES)
decoder_position_ids = torch.ones_like(batch_decoder_input[0, :, 0], dtype=torch.int64, device=model.device).cumsum(0) - 1
model.decoder.model._setup_cache(model.config, batch_size, model.device, model.dtype)
model.text_encoder.model._setup_cache(model.config, batch_size, model.device, model.dtype)
batch_predictions = [[] for _ in range(current_batch_size)]
with torch.inference_mode():
encoder_hidden_states = model.encoder(pixel_values=batch_pixel_values).last_hidden_state
text_encoder_hidden_states = model.text_encoder(
input_boxes=batch_bboxes,
input_boxes_counts=batch_bbox_counts,
cache_position=None,
attention_mask=batch_bbox_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=None,
use_cache=False
).hidden_states
token_count = 0
all_done = torch.zeros(current_batch_size, dtype=torch.bool, device=model.device)
while token_count < max_tokens:
is_prefill = token_count == 0
return_dict = model.decoder(
input_ids=batch_decoder_input,
encoder_hidden_states=text_encoder_hidden_states,
cache_position=decoder_position_ids,
use_cache=True,
prefill=is_prefill
)
decoder_position_ids = decoder_position_ids[-1:] + 1
box_logits = return_dict["bbox_logits"][:, -1, :].detach()
rowcol_logits = return_dict["class_logits"][:, -1, :].detach()
rowcol_preds = torch.argmax(rowcol_logits, dim=-1)
box_preds = torch.argmax(box_logits, dim=-1)
done = (rowcol_preds == processor.tokenizer.eos_id) | (rowcol_preds == processor.tokenizer.pad_id)
done = done
all_done = all_done | done
if all_done.all():
break
batch_decoder_input = torch.cat([box_preds.unsqueeze(1), rowcol_preds.unsqueeze(1).unsqueeze(1)], dim=-1)
for j, (pred, status) in enumerate(zip(batch_decoder_input, all_done)):
if not status:
batch_predictions[j].append(pred[0].tolist())
token_count += inference_token_count
inference_token_count = batch_decoder_input.shape[1]
for j, (preds, input_cells, orig_size) in enumerate(zip(batch_predictions, batch_table_cells, orig_sizes)):
img_w, img_h = orig_size
width_scaler = img_w / model.config.decoder.out_box_size
height_scaler = img_h / model.config.decoder.out_box_size
# cx, cy to corners
for i, pred in enumerate(preds):
w = pred[2] / 2
h = pred[3] / 2
x1 = pred[0] - w
y1 = pred[1] - h
x2 = pred[0] + w
y2 = pred[1] + h
class_ = int(pred[4] - SPECIAL_TOKENS)
preds[i] = [x1 * width_scaler, y1 * height_scaler, x2 * width_scaler, y2 * height_scaler, class_]
# Get rows and columns
bb_rows = [p[:4] for p in preds if p[4] == 0]
bb_cols = [p[:4] for p in preds if p[4] == 1]
rows = []
cols = []
for row_idx, row in enumerate(bb_rows):
cell = TableCell(
bbox=row,
row_id=row_idx
)
rows.append(cell)
for col_idx, col in enumerate(bb_cols):
cell = TableCell(
bbox=col,
col_id=col_idx,
)
cols.append(cell)
# Assign cells to rows/columns
cells = []
for cell in input_cells:
max_intersection = 0
row_pred = None
for row_idx, row in enumerate(rows):
intersection_pct = Bbox(bbox=cell["bbox"]).intersection_pct(row)
if intersection_pct > max_intersection:
max_intersection = intersection_pct
row_pred = row_idx
max_intersection = 0
col_pred = None
for col_idx, col in enumerate(cols):
intersection_pct = Bbox(bbox=cell["bbox"]).intersection_pct(col)
if intersection_pct > max_intersection:
max_intersection = intersection_pct
col_pred = col_idx
cells.append(
TableCell(
bbox=cell["bbox"],
text=cell.get("text"),
row_id=row_pred,
col_id=col_pred
)
)
rotated = is_rotated(rows, cols)
for cell in cells:
if cell.row_id is None:
closest_row = None
closest_row_dist = None
for cell2 in cells:
if cell2.row_id is None:
continue
if rotated:
cell_y_center = cell.center[0]
cell2_y_center = cell2.center[0]
else:
cell_y_center = cell.center[1]
cell2_y_center = cell2.center[1]
y_dist = abs(cell_y_center - cell2_y_center)
if closest_row_dist is None or y_dist < closest_row_dist:
closest_row = cell2.row_id
closest_row_dist = y_dist
cell.row_id = closest_row
if cell.col_id is None:
closest_col = None
closest_col_dist = None
for cell2 in cells:
if cell2.col_id is None:
continue
if rotated:
cell_x_center = cell.center[1]
cell2_x_center = cell2.center[1]
else:
cell_x_center = cell.center[0]
cell2_x_center = cell2.center[0]
x_dist = abs(cell2_x_center - cell_x_center)
if closest_col_dist is None or x_dist < closest_col_dist:
closest_col = cell2.col_id
closest_col_dist = x_dist
cell.col_id = closest_col
result = TableResult(
cells=cells,
rows=rows,
cols=cols,
image_bbox=[0, 0, img_w, img_h],
)
output_order.append(result)
return output_order |