Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,046 Bytes
b13c502 c98b207 d068d4a c98b207 3f5fb82 b13c502 4d87b14 8e4e648 b13c502 c98b207 300e23e c98b207 a0c9f98 c98b207 8e4e648 a0c9f98 8e4e648 d454525 8e4e648 a0c9f98 f324a05 17410b0 f324a05 c98b207 3269b1e c98b207 f8349ca b13c502 300e23e b13c502 d616ff6 b13c502 c98b207 8e4e648 4d87b14 e740e32 8e4e648 e740e32 8e4e648 4d87b14 8e4e648 4d87b14 8e4e648 4d87b14 8e4e648 4d87b14 8e4e648 e740e32 8e4e648 b13c502 3269b1e 90b9de8 b13c502 8e4e648 c98b207 8e4e648 c98b207 2692054 3269b1e 8e4e648 3269b1e 67d3fd3 ac56402 775d6e0 0620ff6 8e4e648 b769a0c 0620ff6 b13c502 8e4e648 b13c502 300e23e b13c502 300e23e 3269b1e c98b207 3269b1e c98b207 300e23e bf65021 300e23e bf65021 c98b207 f324a05 cf7a112 b13c502 ac56402 cf7a112 e7455bb 60e7596 a0c9f98 3269b1e 60e7596 e7455bb f324a05 c98b207 0d0766f c98b207 a927087 c98b207 17410b0 3269b1e c98b207 17410b0 300e23e c98b207 c3e970b 3269b1e c98b207 a927087 c98b207 bb45d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import pymupdf
import docx
from pptx import Presentation
MODEL_LIST = ["THUDM/glm-4v-9b"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "<h1>Multimodal Model for Complex Doc Extraction</h1>"
DESCRIPTION = f"""
<center>
<p>😊 A Demo For Complex Doc Extraction via GLM4.
<br>
🚀 MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a>
<br>
✨ Important: Do not upload any sensitive documents.
<br>
🙇♂️ May be rebuilding from time to time.</p>
</center>"""
CSS = """
h1 {
text-align: center;
display: block;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
def extract_text(path):
return open(path, 'r').read()
def extract_pdf(path):
doc = pymupdf.open(path)
text = ""
for page in doc:
text += page.get_text()
return text
def extract_docx(path):
doc = docx.Document(path)
data = []
for paragraph in doc.paragraphs:
data.append(paragraph.text)
content = '\n\n'.join(data)
return content
def extract_pptx(path):
prs = Presentation(path)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
def mode_load(path):
choice = ""
file_type = path.split(".")[-1]
print(file_type)
if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
if file_type.endswith("pdf"):
content = extract_pdf(path)
elif file_type.endswith("docx"):
content = extract_docx(path)
elif file_type.endswith("pptx"):
content = extract_pptx(path)
else:
content = extract_text(path)
choice = "doc"
print(content[:100])
return choice, content[:5000]
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
content = Image.open(path).convert('RGB')
choice = "image"
return choice, content
else:
raise gr.Error("Oops, unsupported files.")
@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
prompt_files = []
if message["files"]:
choice, contents = mode_load(message["files"][-1])
if choice == "image":
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif choice == "doc":
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
conversation.append({"role": "user", "content": format_msg})
else:
if len(history) == 0:
#raise gr.Error("Please upload an image first.")
contents = None
conversation.append({"role": "user", "content": message['text']})
else:
#image = Image.open(history[0][0][0])
for prompt, answer in history:
if answer is None:
prompt_files.append(prompt[0])
conversation.extend([{"role": "user", "content": ""},{"role": "assistant", "content": ""}])
else:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
choice, contents = mode_load(prompt_files[-1])
if choice == "image":
conversation.append({"role": "user", "image": contents, "content": message['text']})
elif choice == "doc":
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
conversation.append({"role": "user", "content": format_msg})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
max_length=max_length,
streamer=streamer,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=penalty,
eos_token_id=[151329, 151336, 151338],
)
gen_kwargs = {**input_ids, **generate_kwargs}
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot()
chat_input = gr.MultimodalTextbox(
interactive=True,
placeholder="Enter message or upload a file one time...",
show_label=False,
)
EXAMPLES = [
[{"text": "Describe it in detailed", "files": ["./IMG_2700.png"]}],
[{"text": "Where it is?", "files": ["./hotel.jpg"]}],
[{"text": "Is it real?", "files": ["./spacecat.png"]}]
]
with gr.Blocks(css=CSS, theme="soft",fill_height=True) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=8192,
step=1,
value=4096,
label="Max Length",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=10,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
),
gr.Examples(EXAMPLES,[chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False) |