GLM-4-DOC / app.py
vilarin's picture
Update app.py
cbb017b verified
raw
history blame
4.99 kB
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer
import os
from huggingface_hub import hf_hub_download
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "<h1><center>VL-Chatbox</center></h1>"
DESCRIPTION = "<h3><center>MODEL LOADED: " + MODEL_NAME + "</center></h3>"
DEFAULT_SYSTEM = "You named Chatbox. You are a good assitant."
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
filenames = [
"generation_config.json",
"model-00001-of-00004.safetensors",
"model-00002-of-00004.safetensors",
"model-00003-of-00004.safetensors",
"model-00004-of-00004.safetensors",
"model.safetensors.index.json",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json"
]
for filename in filenames:
downloaded_model_path = hf_hub_download(
repo_id=MODEL_ID,
filename=filename,
local_dir="./model/"
)
for items in os.listdir("./model"):
print(items)
# def no_logger():
# logging.config.dictConfig({
# 'version': 1,
# 'disable_existing_loggers': True,
# })
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path="./model/",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path="./model/",trust_remote_code=True)
vision_tower = model.get_vision_tower()
vision_tower.load_model()
vision_tower.to(device="cuda", dtype=torch.float16)
image_processor = vision_tower.image_processor
tokenizer.pad_token = tokenizer.eos_token
# Define terminators (if applicable, adjust as needed)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU
def stream_chat(message, history: list, system: str, temperature: float, max_new_tokens: int):
print(message)
conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}]
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message['text']})
if message["files"]:
image = Image.open(message["files"][0]).convert('RGB')
# Process the conversation text
inputs = model.build_conversation_input_ids(tokenizer, query=message['text'], image=image, image_processor=image_processor)
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
images = None
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
eos_token_id=terminators,
images=images
)
if temperature == 0:
generate_kwargs["do_sample"] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for new_token in streamer:
output += new_token
yield output
chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
chatbot=chatbot,
textbox=chat_input,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Text(
value="",
label="System",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)