Spaces:
Running
on
Zero
Running
on
Zero
from threading import Thread | |
import torch | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer | |
import os | |
from huggingface_hub import hf_hub_download | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_ID = os.environ.get("MODEL_ID") | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
TITLE = "<h1><center>VL-Chatbox</center></h1>" | |
DESCRIPTION = "<h3><center>MODEL LOADED: " + MODEL_NAME + "</center></h3>" | |
DEFAULT_SYSTEM = "You named Chatbox. You are a good assitant." | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
""" | |
filenames = [ | |
"generation_config.json", | |
"model-00001-of-00004.safetensors", | |
"model-00002-of-00004.safetensors", | |
"model-00003-of-00004.safetensors", | |
"model-00004-of-00004.safetensors", | |
"model.safetensors.index.json", | |
"special_tokens_map.json", | |
"tokenizer.json", | |
"tokenizer_config.json" | |
] | |
for filename in filenames: | |
downloaded_model_path = hf_hub_download( | |
repo_id=MODEL_ID, | |
filename=filename, | |
local_dir="./model/" | |
) | |
for items in os.listdir("./model"): | |
print(items) | |
# def no_logger(): | |
# logging.config.dictConfig({ | |
# 'version': 1, | |
# 'disable_existing_loggers': True, | |
# }) | |
model = AutoModelForCausalLM.from_pretrained( | |
pretrained_model_name_or_path="./model/", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
).to(0) | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path="./model/",trust_remote_code=True) | |
vision_tower = model.get_vision_tower() | |
vision_tower.load_model() | |
vision_tower.to(device="cuda", dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
tokenizer.pad_token = tokenizer.eos_token | |
# Define terminators (if applicable, adjust as needed) | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
def stream_chat(message, history: list, system: str, temperature: float, max_new_tokens: int): | |
print(message) | |
conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}] | |
for prompt, answer in history: | |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
conversation.append({"role": "user", "content": message['text']}) | |
if message["files"]: | |
image = Image.open(message["files"][0]).convert('RGB') | |
# Process the conversation text | |
inputs = model.build_conversation_input_ids(tokenizer, query=message['text'], image=image, image_processor=image_processor) | |
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True) | |
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True) | |
else: | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) | |
images = None | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
do_sample=True, | |
eos_token_id=terminators, | |
images=images | |
) | |
if temperature == 0: | |
generate_kwargs["do_sample"] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
output = "" | |
for new_token in streamer: | |
output += new_token | |
yield output | |
chatbot = gr.Chatbot(height=450) | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
multimodal=True, | |
chatbot=chatbot, | |
textbox=chat_input, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Text( | |
value="", | |
label="System", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.queue(api_open=False).launch(show_api=False, share=False) |