Spaces:
Running
on
A10G
Running
on
A10G
JingyeChen22
commited on
Commit
•
99f5897
1
Parent(s):
57d04bb
Update app.py
Browse files
app.py
CHANGED
@@ -35,7 +35,7 @@ text_encoder = CLIPTextModel.from_pretrained(
|
|
35 |
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="text_encoder"
|
36 |
).cuda().half()
|
37 |
tokenizer = CLIPTokenizer.from_pretrained(
|
38 |
-
'
|
39 |
)
|
40 |
|
41 |
#### additional tokens are introduced, including coordinate tokens and character tokens
|
@@ -51,7 +51,7 @@ for c in alphabet:
|
|
51 |
print(len(tokenizer))
|
52 |
print('***************')
|
53 |
|
54 |
-
vae = AutoencoderKL.from_pretrained('
|
55 |
unet = UNet2DConditionModel.from_pretrained(
|
56 |
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="unet"
|
57 |
).half().cuda()
|
@@ -515,7 +515,7 @@ def text_to_image(guest_id, i, orig_i, prompt,keywords,positive_prompt,radio,sli
|
|
515 |
prompts_cond = torch.Tensor(prompts_cond).long().cuda()
|
516 |
prompts_nocond = torch.Tensor(prompts_nocond).long().cuda()
|
517 |
|
518 |
-
scheduler = DDPMScheduler.from_pretrained('
|
519 |
scheduler.set_timesteps(slider_step)
|
520 |
noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda").half()
|
521 |
input = noise
|
|
|
35 |
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="text_encoder"
|
36 |
).cuda().half()
|
37 |
tokenizer = CLIPTokenizer.from_pretrained(
|
38 |
+
'botp/stable-diffusion-v1-5', subfolder="tokenizer"
|
39 |
)
|
40 |
|
41 |
#### additional tokens are introduced, including coordinate tokens and character tokens
|
|
|
51 |
print(len(tokenizer))
|
52 |
print('***************')
|
53 |
|
54 |
+
vae = AutoencoderKL.from_pretrained('botp/stable-diffusion-v1-5', subfolder="vae").half().cuda()
|
55 |
unet = UNet2DConditionModel.from_pretrained(
|
56 |
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="unet"
|
57 |
).half().cuda()
|
|
|
515 |
prompts_cond = torch.Tensor(prompts_cond).long().cuda()
|
516 |
prompts_nocond = torch.Tensor(prompts_nocond).long().cuda()
|
517 |
|
518 |
+
scheduler = DDPMScheduler.from_pretrained('botp/stable-diffusion-v1-5', subfolder="scheduler")
|
519 |
scheduler.set_timesteps(slider_step)
|
520 |
noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda").half()
|
521 |
input = noise
|