JingyeChen commited on
Commit
7585c5c
1 Parent(s): 1a239a6
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -416,7 +416,7 @@ with gr.Blocks() as demo:
416
  with gr.Tab("Text-to-Image"):
417
  with gr.Row():
418
  with gr.Column(scale=1):
419
- prompt = gr.Textbox(label="Prompt. You can let the language model automatically identify keywords, or provide them in the 'keywords' below", placeholder="A beautiful city skyline stamp of Shanghai")
420
  keywords = gr.Textbox(label="(Optional) Keywords. Should be seperated by / (e.g., keyword1/keyword2/...)", placeholder="keyword1/keyword2")
421
  positive_prompt = gr.Textbox(label="(Optional) Positive prompt", value=", showing different kinds of quails, digital art, very detailed, fantasy, high definition, cinematic light, dnd, trending on artstation")
422
 
@@ -438,7 +438,7 @@ with gr.Blocks() as demo:
438
  radio = gr.Radio(["TextDiffuser-2", "TextDiffuser-2-LCM"], label="Choice of models", value="TextDiffuser-2")
439
  slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser-2. You may decease the step to 4 when using LCM.")
440
  slider_guidance = gr.Slider(minimum=1, maximum=13, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of cfg and is set to 7.5 in default. When using LCM, cfg is set to 1.")
441
- slider_batch = gr.Slider(minimum=1, maximum=4, value=6, step=1, label="Batch size", info="The number of images to be sampled.")
442
  slider_temperature = gr.Slider(minimum=0.1, maximum=2, value=0.7, step=0.1, label="Temperature", info="Control the diversity of layout planner. Higher value indicates more diversity.")
443
  slider_natural = gr.Checkbox(label="Natural image generation", value=False, info="The text position and content info will not be incorporated.")
444
  # slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
 
416
  with gr.Tab("Text-to-Image"):
417
  with gr.Row():
418
  with gr.Column(scale=1):
419
+ prompt = gr.Textbox(label="Prompt. You can let language model automatically identify keywords, or provide them below", placeholder="A beautiful city skyline stamp of Shanghai")
420
  keywords = gr.Textbox(label="(Optional) Keywords. Should be seperated by / (e.g., keyword1/keyword2/...)", placeholder="keyword1/keyword2")
421
  positive_prompt = gr.Textbox(label="(Optional) Positive prompt", value=", showing different kinds of quails, digital art, very detailed, fantasy, high definition, cinematic light, dnd, trending on artstation")
422
 
 
438
  radio = gr.Radio(["TextDiffuser-2", "TextDiffuser-2-LCM"], label="Choice of models", value="TextDiffuser-2")
439
  slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser-2. You may decease the step to 4 when using LCM.")
440
  slider_guidance = gr.Slider(minimum=1, maximum=13, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of cfg and is set to 7.5 in default. When using LCM, cfg is set to 1.")
441
+ slider_batch = gr.Slider(minimum=1, maximum=6, value=4, step=1, label="Batch size", info="The number of images to be sampled.")
442
  slider_temperature = gr.Slider(minimum=0.1, maximum=2, value=0.7, step=0.1, label="Temperature", info="Control the diversity of layout planner. Higher value indicates more diversity.")
443
  slider_natural = gr.Checkbox(label="Natural image generation", value=False, info="The text position and content info will not be incorporated.")
444
  # slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)