Spaces:
Sleeping
Sleeping
JingyeChen22
commited on
Commit
Β·
cc5a880
1
Parent(s):
913e917
Update app.py
Browse files
app.py
CHANGED
@@ -484,7 +484,7 @@ def text_to_image(prompt,slider_step,slider_guidance,slider_batch, version):
|
|
484 |
text_encoder = text_encoder21
|
485 |
tokenizer = tokenizer21
|
486 |
scheduler = scheduler21
|
487 |
-
slider_batch = min(slider_batch,
|
488 |
size = 768
|
489 |
elif version == 'Stable Diffusion v1.5':
|
490 |
vae = vae15
|
@@ -612,7 +612,7 @@ def text_to_image_with_template(prompt,template_image,slider_step,slider_guidanc
|
|
612 |
text_encoder = text_encoder21
|
613 |
tokenizer = tokenizer21
|
614 |
scheduler = scheduler21
|
615 |
-
slider_batch = min(slider_batch,
|
616 |
size = 768
|
617 |
elif version == 'Stable Diffusion v1.5':
|
618 |
vae = vae15
|
@@ -736,7 +736,7 @@ def text_inpainting(prompt,orig_image,mask_image,slider_step,slider_guidance,sli
|
|
736 |
text_encoder = text_encoder21
|
737 |
tokenizer = tokenizer21
|
738 |
scheduler = scheduler21
|
739 |
-
slider_batch = min(slider_batch,
|
740 |
size = 768
|
741 |
elif version == 'Stable Diffusion v1.5':
|
742 |
vae = vae15
|
@@ -906,7 +906,7 @@ with gr.Blocks() as demo:
|
|
906 |
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v2.1")
|
907 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
|
908 |
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
|
909 |
-
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to
|
910 |
# slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
|
911 |
button = gr.Button("Generate")
|
912 |
|
@@ -957,7 +957,7 @@ with gr.Blocks() as demo:
|
|
957 |
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v2.1")
|
958 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
|
959 |
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
|
960 |
-
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to
|
961 |
# binary = gr.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?")
|
962 |
binary = gr.Checkbox(label="Binarization", bool=True, info="Whether to binarize the template image? You may need it when using handwritten images as templates.")
|
963 |
button = gr.Button("Generate")
|
@@ -1007,7 +1007,7 @@ with gr.Blocks() as demo:
|
|
1007 |
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v2.1")
|
1008 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
|
1009 |
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
|
1010 |
-
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to
|
1011 |
button = gr.Button("Generate")
|
1012 |
with gr.Column(scale=1):
|
1013 |
output = gr.Image(label='Generated image')
|
|
|
484 |
text_encoder = text_encoder21
|
485 |
tokenizer = tokenizer21
|
486 |
scheduler = scheduler21
|
487 |
+
slider_batch = min(slider_batch, 1)
|
488 |
size = 768
|
489 |
elif version == 'Stable Diffusion v1.5':
|
490 |
vae = vae15
|
|
|
612 |
text_encoder = text_encoder21
|
613 |
tokenizer = tokenizer21
|
614 |
scheduler = scheduler21
|
615 |
+
slider_batch = min(slider_batch, 1)
|
616 |
size = 768
|
617 |
elif version == 'Stable Diffusion v1.5':
|
618 |
vae = vae15
|
|
|
736 |
text_encoder = text_encoder21
|
737 |
tokenizer = tokenizer21
|
738 |
scheduler = scheduler21
|
739 |
+
slider_batch = min(slider_batch, 1)
|
740 |
size = 768
|
741 |
elif version == 'Stable Diffusion v1.5':
|
742 |
vae = vae15
|
|
|
906 |
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v2.1")
|
907 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
|
908 |
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
|
909 |
+
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
|
910 |
# slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
|
911 |
button = gr.Button("Generate")
|
912 |
|
|
|
957 |
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v2.1")
|
958 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
|
959 |
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
|
960 |
+
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
|
961 |
# binary = gr.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?")
|
962 |
binary = gr.Checkbox(label="Binarization", bool=True, info="Whether to binarize the template image? You may need it when using handwritten images as templates.")
|
963 |
button = gr.Button("Generate")
|
|
|
1007 |
radio = gr.Radio(["Stable Diffusion v2.1", "Stable Diffusion v1.5"], label="Pre-trained Model", value="Stable Diffusion v2.1")
|
1008 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser.")
|
1009 |
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of classifier-free guidance and is set to 7.5 in default.")
|
1010 |
+
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled. Maximum number is set to 1 for SD v2.1 to avoid OOM.")
|
1011 |
button = gr.Button("Generate")
|
1012 |
with gr.Column(scale=1):
|
1013 |
output = gr.Image(label='Generated image')
|