Spaces:
Runtime error
Runtime error
File size: 7,780 Bytes
f3d4c9e 5be23da 131879f 946b62f 5be23da d93220e 61b79ea 5be23da 7d47c0f c5d7e61 5be23da 5ae388f 5b9a00a 5ae388f fb65e88 f3d4c9e 8c31276 f3d4c9e 8c31276 f3d4c9e 8c31276 f3d4c9e 8c31276 f3d4c9e 7d47c0f f3d4c9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS, Chroma
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
import tempfile # ์์ ํ์ผ์ ์์ฑํ๊ธฐ ์ํ ๋ผ์ด๋ธ๋ฌ๋ฆฌ์
๋๋ค.
import os
# PDF ๋ฌธ์๋ก๋ถํฐ ํ
์คํธ๋ฅผ ์ถ์ถํ๋ ํจ์์
๋๋ค.
def get_pdf_text(pdf_docs):
temp_dir = tempfile.TemporaryDirectory() # ์์ ๋๋ ํ ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name) # ์์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํฉ๋๋ค.
with open(temp_filepath, "wb") as f: # ์์ ํ์ผ์ ๋ฐ์ด๋๋ฆฌ ์ฐ๊ธฐ ๋ชจ๋๋ก ์ฝ๋๋ค.
f.write(pdf_docs.getvalue()) # PDF ๋ฌธ์์ ๋ด์ฉ์ ์์ ํ์ผ์ ์๋๋ค.
pdf_loader = PyPDFLoader(temp_filepath) # PyPDFLoader๋ฅผ ์ฌ์ฉํด PDF๋ฅผ ๋ก๋ํฉ๋๋ค.
pdf_doc = pdf_loader.load() # ํ
์คํธ๋ฅผ ์ถ์ถํฉ๋๋ค.
return pdf_doc # ์ถ์ถํ ํ
์คํธ๋ฅผ ๋ฐํํฉ๋๋ค.
# ๊ณผ์
# ์๋ ํ
์คํธ ์ถ์ถ ํจ์๋ฅผ ์์ฑ
def get_text_file(text_docs):
temp_dir = tempfile.TemporaryDirectory() # ์์ ๋๋ ํ ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
temp_filepath = os.path.join(temp_dir.name, text_docs.name) # ์์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํฉ๋๋ค.
with open(temp_filepath, "wb") as f: # ์์ ํ์ผ์ ๋ฐ์ด๋๋ฆฌ ์ฐ๊ธฐ ๋ชจ๋๋ก ์ฝ๋๋ค.
f.write(text_docs.getvalue()) # Text ๋ฌธ์์ ๋ด์ฉ์ ์์ ํ์ผ์ ์๋๋ค.
text_loader = TextLoader(temp_filepath) # TextLoader ์ธ์คํด์ค๋ฅผ ์์ฑํฉ๋๋ค.
text_doc = text_loader.load()
return text_doc
def get_csv_file(csv_docs):
temp_dir = tempfile.TemporaryDirectory() # ์์ ๋๋ ํ ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
temp_filepath = os.path.join(temp_dir.name, csv_docs.name) # ์์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํฉ๋๋ค.
with open(temp_filepath, "wb") as f: # ์์ ํ์ผ์ ๋ฐ์ด๋๋ฆฌ ์ฐ๊ธฐ ๋ชจ๋๋ก ์ฝ๋๋ค.
f.write(csv_docs.getvalue()) # CSV ๋ฌธ์์ ๋ด์ฉ์ ์์ ํ์ผ์ ์๋๋ค.
csv_loader = CSVLoader(temp_filepath) # CSVLoader ์ธ์คํด์ค๋ฅผ ์์ฑํฉ๋๋ค.
csv_doc = csv_loader.load() # ํ
์คํธ๋ฅผ ์ถ์ถํฉ๋๋ค.
return csv_doc # ์ถ์ถํ ํ
์คํธ๋ฅผ ๋ฐํํฉ๋๋ค.
def get_json_file(json_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, json_docs.name)
with open(temp_filepath, "wb") as f:
f.write(json_docs.getvalue())
json_loader = JSONLoader(temp_filepath,
jq_schema='.',
text_content=False
)
json_doc = json_loader.load()
return json_doc
# ๋ฌธ์๋ค์ ์ฒ๋ฆฌํ์ฌ ํ
์คํธ ์ฒญํฌ๋ก ๋๋๋ ํจ์์
๋๋ค.
def get_text_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # ์ฒญํฌ์ ํฌ๊ธฐ๋ฅผ ์ง์ ํฉ๋๋ค.
chunk_overlap=200, # ์ฒญํฌ ์ฌ์ด์ ์ค๋ณต์ ์ง์ ํฉ๋๋ค.
length_function=len # ํ
์คํธ์ ๊ธธ์ด๋ฅผ ์ธก์ ํ๋ ํจ์๋ฅผ ์ง์ ํฉ๋๋ค.
)
documents = text_splitter.split_documents(documents) # ๋ฌธ์๋ค์ ์ฒญํฌ๋ก ๋๋๋๋ค
return documents # ๋๋ ์ฒญํฌ๋ฅผ ๋ฐํํฉ๋๋ค.
# ํ
์คํธ ์ฒญํฌ๋ค๋ก๋ถํฐ ๋ฒกํฐ ์คํ ์ด๋ฅผ ์์ฑํ๋ ํจ์์
๋๋ค.
def get_vectorstore(text_chunks):
# OpenAI ์๋ฒ ๋ฉ ๋ชจ๋ธ์ ๋ก๋ํฉ๋๋ค. (Embedding models - Ada v2)
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(text_chunks, embeddings) # FAISS ๋ฒกํฐ ์คํ ์ด๋ฅผ ์์ฑํฉ๋๋ค.
return vectorstore # ์์ฑ๋ ๋ฒกํฐ ์คํ ์ด๋ฅผ ๋ฐํํฉ๋๋ค.
def get_conversation_chain(vectorstore):
gpt_model_name = 'gpt-3.5-turbo'
llm = ChatOpenAI(model_name = gpt_model_name) #gpt-3.5 ๋ชจ๋ธ ๋ก๋
# ๋ํ ๊ธฐ๋ก์ ์ ์ฅํ๊ธฐ ์ํ ๋ฉ๋ชจ๋ฆฌ๋ฅผ ์์ฑํฉ๋๋ค.
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
# ๋ํ ๊ฒ์ ์ฒด์ธ์ ์์ฑํฉ๋๋ค.
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
# ์ฌ์ฉ์ ์
๋ ฅ์ ์ฒ๋ฆฌํ๋ ํจ์์
๋๋ค.
def handle_userinput(user_question):
# ๋ํ ์ฒด์ธ์ ์ฌ์ฉํ์ฌ ์ฌ์ฉ์ ์ง๋ฌธ์ ๋ํ ์๋ต์ ์์ฑํฉ๋๋ค.
response = st.session_state.conversation({'question': user_question})
# ๋ํ ๊ธฐ๋ก์ ์ ์ฅํฉ๋๋ค.
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="๋จธ์ ๋ฌ๋_๊ณผ์ "
"LANGCHAIN๊ณผ STREAMLIT ๊ธฐ๋ฐ์ RAG AI CHATBOT ๊ตฌํ",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("GPT๊ธฐ๋ฐ ์ฑ๋ด: Prompt๋ฅผ ์
๋ ฅํ์ธ์.")
user_question = st.text_input("๋ฌธ์์ ๊ดํด ์ง๋ฌธํด๋ณด์ธ์.")
if user_question:
handle_userinput(user_question)
with st.sidebar:
openai_key = st.text_input("OpenAI API key๋ฅผ ๋ณต์ฌ ๋ถ์ฌ๋ฃ๊ธฐ ํ์ธ์. (sk-...)")
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
st.subheader("๋ฌธ์ ์ฌ๋ฆฌ๊ธฐ")
docs = st.file_uploader(
"๋ฌธ์๋ฅผ ์
๋ก๋ ํ ํ Process ๋ฒํผ์ ํด๋ฆญํ์ธ์.", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
doc_list = []
for file in docs:
print('file - type : ', file.type)
if file.type == 'text/plain':
# file is .txt
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
# file is .pdf
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
# file is .csv
doc_list.extend(get_csv_file(file))
elif file.type == 'application/json':
# file is .json
doc_list.extend(get_json_file(file))
# get the text chunks
text_chunks = get_text_chunks(doc_list)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(
vectorstore)
if __name__ == '__main__':
main()
|