"""Code from : https://debuggercafe.com/implementing-resnet18-in-pytorch-from-scratch/""" import torch.nn as nn import torch from torchvision.ops import RoIPool from torch import Tensor from typing import Type class BasicBlock(nn.Module): def __init__(self, in_channels: int,out_channels: int,stride: int = 1,expansion: int = 1,downsample: nn.Module = None) -> None: super(BasicBlock, self).__init__() # Multiplicative factor for the subsequent conv2d layer's output channels. # It is 1 for ResNet18 and ResNet34. self.expansion = expansion self.downsample = downsample self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1,bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=3, padding=1,bias=False) self.bn2 = nn.BatchNorm2d(out_channels*self.expansion) def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet18(nn.Module): def __init__(self, img_channels: int,num_layers: int,block: Type[BasicBlock],num_classes: int = 1000) -> None: super(ResNet18, self).__init__() if num_layers == 18: # The following `layers` list defines the number of `BasicBlock` # to use to build the network and how many basic blocks to stack # together. layers = [2, 2, 2, 2] self.expansion = 1 self.in_channels = 64 # All ResNets (18 to 152) contain a Conv2d => BN => ReLU for the first # three layers. Here, kernel size is 7. self.conv1 = nn.Conv2d(in_channels=img_channels,out_channels=self.in_channels,kernel_size=7, stride=2,padding=3,bias=False) self.bn1 = nn.BatchNorm2d(self.in_channels) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512*self.expansion, num_classes) def _make_layer(self, block: Type[BasicBlock],out_channels: int,blocks: int,stride: int = 1) -> nn.Sequential: downsample = None if stride != 1: """ This should pass from `layer2` to `layer4` or when building ResNets50 and above. Section 3.3 of the paper Deep Residual Learning for Image Recognition (https://arxiv.org/pdf/1512.03385v1.pdf). """ downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels*self.expansion,kernel_size=1,stride=stride,bias=False), nn.BatchNorm2d(out_channels * self.expansion), ) layers = [] layers.append( block( self.in_channels, out_channels, stride, self.expansion, downsample ) ) self.in_channels = out_channels * self.expansion for i in range(1, blocks): layers.append(block( self.in_channels, out_channels, expansion=self.expansion )) return nn.Sequential(*layers) def forward(self, x: Tensor) -> Tensor: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # The spatial dimension of the final layer's feature # map should be (7, 7) for all ResNets. #print('Dimensions of the last convolutional feature map: ', x.shape) x = self.avgpool(x) x = torch.flatten(x, 1) #x = self.fc(x) return x