File size: 48,552 Bytes
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
import os
import gc
import cv2
import json
import math
import decord
import random
import numpy as np
from PIL import Image
from tqdm import tqdm
from decord import VideoReader
from contextlib import contextmanager
from func_timeout import FunctionTimedOut
from typing import Optional, Sized, Iterator

import torch
from torch.utils.data import Dataset, Sampler
import torch.nn.functional as F
from torchvision.transforms import ToPILImage
from torchvision import transforms
from accelerate.logging import get_logger

logger = get_logger(__name__)

import threading
log_lock = threading.Lock()

def log_error_to_file(error_message, video_path):
    with log_lock:
        with open("error_log.txt", "a") as f:
            f.write(f"Error: {error_message}\n")
            f.write(f"Video Path: {video_path}\n")
            f.write("-" * 50 + "\n")

def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
    stickwidth = 4
    limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
    kps = np.array(kps)

    w, h = image_pil.size
    out_img = np.zeros([h, w, 3])

    for i in range(len(limbSeq)):
        index = limbSeq[i]
        color = color_list[index[0]]

        x = kps[index][:, 0]
        y = kps[index][:, 1]
        length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
        angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
        polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
        out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
    out_img = (out_img * 0.6).astype(np.uint8)

    for idx_kp, kp in enumerate(kps):
        color = color_list[idx_kp]
        x, y = kp
        out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

    out_img_pil = Image.fromarray(out_img.astype(np.uint8))
    return out_img_pil

@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
    vr = VideoReader(*args, **kwargs)
    try:
        yield vr
    finally:
        del vr
        gc.collect()

def get_valid_segments(valid_frame, tolerance=5):
    valid_positions = sorted(set(valid_frame['face']).union(set(valid_frame['head'])))
    
    valid_segments = []
    current_segment = [valid_positions[0]]

    for i in range(1, len(valid_positions)):
        if valid_positions[i] - valid_positions[i - 1] <= tolerance:
            current_segment.append(valid_positions[i])
        else:
            valid_segments.append(current_segment)
            current_segment = [valid_positions[i]]

    if current_segment:
        valid_segments.append(current_segment)

    return valid_segments


def get_frame_indices_adjusted_for_face(valid_frames, n_frames):
    valid_length = len(valid_frames)
    if valid_length >= n_frames:
        return valid_frames[:n_frames]
    
    additional_frames_needed = n_frames - valid_length
    repeat_indices = []

    for i in range(additional_frames_needed):
        index_to_repeat = i % valid_length
        repeat_indices.append(valid_frames[index_to_repeat])

    all_indices = valid_frames + repeat_indices
    all_indices.sort()

    return all_indices
        
            
def generate_frame_indices_for_face(n_frames, sample_stride, valid_frame, tolerance=7, skip_frames_start_percent=0.0, skip_frames_end_percent=1.0, skip_frames_start=0, skip_frames_end=0):
    valid_segments = get_valid_segments(valid_frame, tolerance)
    selected_segment = max(valid_segments, key=len) 

    valid_length = len(selected_segment)
    if skip_frames_start_percent != 0.0 or skip_frames_end_percent != 1.0:
        # print("use skip frame percent")
        valid_start = int(valid_length * skip_frames_start_percent)
        valid_end = int(valid_length * skip_frames_end_percent)
    elif skip_frames_start != 0 or skip_frames_end != 0:
        # print("use skip frame")
        valid_start = skip_frames_start
        valid_end = valid_length - skip_frames_end
    else:
        # print("no use skip frame")
        valid_start = 0
        valid_end = valid_length

    if valid_length <= n_frames:
        return get_frame_indices_adjusted_for_face(selected_segment, n_frames), valid_length
    else:
        adjusted_length = valid_end - valid_start
        if adjusted_length <= 0:
            print(f"video_length: {valid_length}, adjusted_length: {adjusted_length}, valid_start:{valid_start}, skip_frames_end: {valid_end}")
            raise ValueError("Skipping too many frames results in no frames left to sample.")
        
        clip_length = min(adjusted_length, (n_frames - 1) * sample_stride + 1)
        start_idx_position = random.randint(valid_start, valid_end - clip_length)
        start_frame = selected_segment[start_idx_position]
        
        selected_frames = []
        for i in range(n_frames):
            next_frame = start_frame + i * sample_stride
            if next_frame in selected_segment:
                selected_frames.append(next_frame)
            else:
                break
        
        if len(selected_frames) < n_frames:
            return get_frame_indices_adjusted_for_face(selected_frames, n_frames), len(selected_frames)
        
        return selected_frames, len(selected_frames)

def frame_has_required_confidence(bbox_data, frame, ID, conf_threshold=0.88):
    frame_str = str(frame)
    if frame_str not in bbox_data:
        return False
    
    frame_data = bbox_data[frame_str]
    
    face_conf = any(
        item['confidence'] > conf_threshold and item['new_track_id'] == ID
        for item in frame_data.get('face', [])
    )
    
    head_conf = any(
        item['confidence'] > conf_threshold and item['new_track_id'] == ID
        for item in frame_data.get('head', [])
    )
    
    return face_conf and head_conf

def select_mask_frames_from_index(batch_frame, original_batch_frame, valid_id, corresponding_data, control_sam2_frame,
                                  valid_frame, bbox_data, base_dir, min_distance=3, min_frames=1, max_frames=5,
                                  mask_type='face', control_mask_type='head', dense_masks=False,
                                  ensure_control_frame=True):
    """
    Selects frames with corresponding mask images while ensuring a minimum distance constraint between frames,
    and that the frames exist in both batch_frame and valid_frame.

    Parameters:
        base_path (str): Base directory where the JSON files and mask results are located.
        min_distance (int): Minimum distance between selected frames.
        min_frames (int): Minimum number of frames to select.
        max_frames (int): Maximum number of frames to select.
        mask_type (str): Type of mask to select frames for ('face' or 'head').
        control_mask_type (str): Type of mask used for control frame selection ('face' or 'head').

    Returns:
        dict: A dictionary where keys are IDs and values are lists of selected mask PNG paths.
    """
    # Helper function to randomly select frames with at least X frames apart
    def select_frames_with_distance_constraint(frames, num_frames, min_distance, control_frame, bbox_data, ID,
                                               ensure_control_frame=True, fallback=True):
        """
        Selects frames with a minimum distance constraint. If not enough frames can be selected, a fallback plan is applied.

        Parameters:
            frames (list): List of frame indices to select from.
            num_frames (int): Number of frames to select.
            min_distance (int): Minimum distance between selected frames.
            control_frame (int): The control frame that must always be included.
            fallback (bool): Whether to apply a fallback strategy if not enough frames meet the distance constraint.

        Returns:
            list: List of selected frames.
        """
        conf_thresholds = [0.95, 0.94, 0.93, 0.92, 0.91, 0.90]
        if ensure_control_frame:
            selected_frames = [control_frame]  # Ensure control frame is always included
        else:
            valid_initial_frames = []
            for conf_threshold in conf_thresholds:
                valid_initial_frames = [
                    f for f in frames
                    if frame_has_required_confidence(bbox_data, f, ID, conf_threshold=conf_threshold)
                ]
                if valid_initial_frames:
                    break
            if valid_initial_frames:
                selected_frames = [random.choice(valid_initial_frames)]
            else:
                # If no frame meets the initial confidence, fall back to a random frame (or handle as per your preference)
                selected_frames = [random.choice(frames)]

        available_frames = [f for f in frames if f != selected_frames[0]]  # Exclude control frame for random selection

        random.shuffle(available_frames)  # Shuffle to introduce randomness

        while available_frames and len(selected_frames) < num_frames:
            last_selected_frame = selected_frames[-1]

            valid_choices = []
            for conf_threshold in conf_thresholds:
                valid_choices = [
                    f for f in available_frames
                    if abs(f - last_selected_frame) >= min_distance and
                       frame_has_required_confidence(bbox_data, f, ID, conf_threshold=conf_threshold)
                ]
                if valid_choices:
                    break

            if valid_choices:
                frame = random.choice(valid_choices)
                available_frames.remove(frame)
                selected_frames.append(frame)
            else:
                if fallback:
                    # Fallback strategy: uniformly distribute remaining frames if distance constraint cannot be met
                    remaining_needed = num_frames - len(selected_frames)
                    remaining_frames = available_frames[:remaining_needed]

                    # Distribute the remaining frames evenly if possible
                    if remaining_frames:
                        step = max(1, len(remaining_frames) // remaining_needed)
                        evenly_selected = remaining_frames[::step][:remaining_needed]
                        selected_frames.extend(evenly_selected)
                    break
                else:
                    break  # No valid choices remain and no fallback strategy is allowed

        if len(selected_frames) < num_frames:
            return None

        return selected_frames

    # Convert batch_frame list to a set to remove duplicates
    batch_frame_set = set(batch_frame)

    # Dictionary to store selected mask PNGs
    selected_masks_dict = {}
    selected_bboxs_dict = {}
    dense_masks_dict = {}
    selected_frames_dict = {}

    # ID
    try:
        mask_valid_frames = valid_frame[mask_type]  # Select frames based on the specified mask type
        control_valid_frames = valid_frame[control_mask_type]  # Control frames for control_mask_type
    except KeyError:
        if mask_type not in valid_frame.keys():
            print(f"no valid {mask_type}")
        if control_mask_type not in valid_frame.keys():
            print(f"no valid {control_mask_type}")

    # Get the control frame for the control mask type
    control_frame = control_sam2_frame[valid_id][control_mask_type]

    # Filter frames to only those which are in both valid_frame and batch_frame_set
    valid_frames = []
    # valid_frames = [frame for frame in mask_valid_frames if frame in control_valid_frames and frame in batch_frame_set]
    for frame in mask_valid_frames:
        if frame in control_valid_frames and frame in batch_frame_set:
            # Check if bbox_data has 'head' or 'face' for the frame
            if str(frame) in bbox_data:
                frame_data = bbox_data[str(frame)]
                if 'head' in frame_data or 'face' in frame_data:
                    valid_frames.append(frame)

    # Ensure the control frame is included in the valid frames
    if ensure_control_frame and (control_frame not in valid_frames):
        valid_frames.append(control_frame)

    # Select a random number of frames between min_frames and max_frames
    num_frames_to_select = random.randint(min_frames, max_frames)
    selected_frames = select_frames_with_distance_constraint(valid_frames, num_frames_to_select, min_distance,
                                                             control_frame, bbox_data, valid_id, ensure_control_frame)

    # Store the selected frames as mask PNGs and bbox
    selected_masks_dict[valid_id] = []
    selected_bboxs_dict[valid_id] = []

    # Initialize the dense_masks_dict entry for the current ID
    dense_masks_dict[valid_id] = []

    # Store the selected frames in the dictionary
    selected_frames_dict[valid_id] = selected_frames

    if dense_masks:
        for frame in original_batch_frame:
            mask_data_path = f"{base_dir}/{valid_id}/annotated_frame_{int(frame):05d}.png"
            mask_array = np.array(Image.open(mask_data_path))
            binary_mask = np.where(mask_array > 0, 1, 0).astype(np.uint8)
            dense_masks_dict[valid_id].append(binary_mask)

    for frame in selected_frames:
        mask_data_path = f"{base_dir}/{valid_id}/annotated_frame_{frame:05d}.png"
        mask_array = np.array(Image.open(mask_data_path))
        binary_mask = np.where(mask_array > 0, 1, 0).astype(np.uint8)
        selected_masks_dict[valid_id].append(binary_mask)

        try:
            for item in bbox_data[f"{frame}"]["head"]:
                if item['new_track_id'] == int(valid_id):
                    temp_bbox = item['box']
                    break
        except (KeyError, StopIteration):
            try:
                for item in bbox_data[f"{frame}"]["face"]:
                    if item['new_track_id'] == int(valid_id):
                        temp_bbox = item['box']
                        break
            except (KeyError, StopIteration):
                temp_bbox = None

        selected_bboxs_dict[valid_id].append(temp_bbox)

    return selected_frames_dict, selected_masks_dict, selected_bboxs_dict, dense_masks_dict

def pad_tensor(tensor, target_size, dim=0):
    padding_size = target_size - tensor.size(dim)
    if padding_size > 0:
        pad_shape = list(tensor.shape)
        pad_shape[dim] = padding_size
        padding_tensor = torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)
        return torch.cat([tensor, padding_tensor], dim=dim)
    else:
        return tensor[:target_size]

def crop_images(selected_frame_index, selected_bboxs_dict, video_reader, return_ori=False):
    """
    Crop images based on given bounding boxes and frame indices from a video.

    Args:
        selected_frame_index (list): List of frame indices to be cropped.
        selected_bboxs_dict (list of dict): List of dictionaries, each containing 'x1', 'y1', 'x2', 'y2' bounding box coordinates.
        video_reader (VideoReader or list of numpy arrays): Video frames accessible by index, where each frame is a numpy array (H, W, C).

    Returns:
        list: A list of cropped images in PIL Image format.
    """
    expanded_cropped_images = []
    original_cropped_images = []
    for frame_idx, bbox in zip(selected_frame_index, selected_bboxs_dict):
        # Get the specific frame from the video reader using the frame index
        frame = video_reader[frame_idx]  # torch.tensor # (H, W, C)

        # Extract bounding box coordinates and convert them to integers
        x1, y1, x2, y2 = int(bbox['x1']), int(bbox['y1']), int(bbox['x2']), int(bbox['y2'])
        # Crop to minimize the bounding box to a square
        width = x2 - x1  # Calculate the width of the bounding box
        height = y2 - y1  # Calculate the height of the bounding box
        side_length = max(width, height)  # Determine the side length of the square (max of width or height)

        # Calculate the center of the bounding box
        center_x = (x1 + x2) // 2
        center_y = (y1 + y2) // 2

        # Calculate new coordinates for the square region centered around the original bounding box
        new_x1 = max(0, center_x - side_length // 2)  # Ensure x1 is within image bounds
        new_y1 = max(0, center_y - side_length // 2)  # Ensure y1 is within image bounds
        new_x2 = min(frame.shape[1], new_x1 + side_length)  # Ensure x2 does not exceed image width
        new_y2 = min(frame.shape[0], new_y1 + side_length)  # Ensure y2 does not exceed image height

        # Adjust coordinates if the cropped area is smaller than the desired side length
        # Ensure final width and height are equal, keeping it a square
        actual_width = new_x2 - new_x1
        actual_height = new_y2 - new_y1

        if actual_width < side_length:
            # Adjust x1 or x2 to ensure the correct side length, while staying in bounds
            if new_x1 == 0:
                new_x2 = min(frame.shape[1], new_x1 + side_length)
            else:
                new_x1 = max(0, new_x2 - side_length)

        if actual_height < side_length:
            # Adjust y1 or y2 to ensure the correct side length, while staying in bounds
            if new_y1 == 0:
                new_y2 = min(frame.shape[0], new_y1 + side_length)
            else:
                new_y1 = max(0, new_y2 - side_length)

        # Expand the square by 20%
        expansion_ratio = 0.2  # Define the expansion ratio
        expansion_amount = int(side_length * expansion_ratio)  # Calculate the number of pixels to expand by

        # Calculate expanded coordinates, ensuring they stay within image bounds
        expanded_x1 = max(0, new_x1 - expansion_amount)  # Expand left, ensuring x1 is within bounds
        expanded_y1 = max(0, new_y1 - expansion_amount)  # Expand up, ensuring y1 is within bounds
        expanded_x2 = min(frame.shape[1], new_x2 + expansion_amount)  # Expand right, ensuring x2 does not exceed bounds
        expanded_y2 = min(frame.shape[0], new_y2 + expansion_amount)  # Expand down, ensuring y2 does not exceed bounds

        # Ensure the expanded area is still a square
        expanded_width = expanded_x2 - expanded_x1
        expanded_height = expanded_y2 - expanded_y1
        final_side_length = min(expanded_width, expanded_height)

        # Adjust to ensure square shape if necessary
        if expanded_width != expanded_height:
            if expanded_width > expanded_height:
                expanded_x2 = expanded_x1 + final_side_length
            else:
                expanded_y2 = expanded_y1 + final_side_length

        expanded_cropped_rgb_tensor = frame[expanded_y1:expanded_y2, expanded_x1:expanded_x2, :]
        expanded_cropped_rgb = Image.fromarray(np.array(expanded_cropped_rgb_tensor)).convert('RGB')
        expanded_cropped_images.append(expanded_cropped_rgb)

        if return_ori:
            original_cropped_rgb_tensor = frame[new_y1:new_y2, new_x1:new_x2, :]
            original_cropped_rgb = Image.fromarray(np.array(original_cropped_rgb_tensor)).convert('RGB')
            original_cropped_images.append(original_cropped_rgb)
            return expanded_cropped_images, original_cropped_images
        
    return expanded_cropped_images, None

def process_cropped_images(expand_images_pil, original_images_pil, target_size=(480, 480)):
    """
    Process a list of cropped images in PIL format.

    Parameters:
    expand_images_pil (list of PIL.Image): List of cropped images in PIL format.
    target_size (tuple of int): The target size for resizing images, default is (480, 480).

    Returns:
    torch.Tensor: A tensor containing the processed images.
    """
    expand_face_imgs = []
    original_face_imgs = []
    if len(original_images_pil) != 0:
        for expand_img, original_img in zip(expand_images_pil, original_images_pil):
            expand_resized_img = expand_img.resize(target_size, Image.LANCZOS)
            expand_src_img = np.array(expand_resized_img)
            expand_src_img = np.transpose(expand_src_img, (2, 0, 1))
            expand_src_img = torch.from_numpy(expand_src_img).unsqueeze(0).float()
            expand_face_imgs.append(expand_src_img)

            original_resized_img = original_img.resize(target_size, Image.LANCZOS)
            original_src_img = np.array(original_resized_img)
            original_src_img = np.transpose(original_src_img, (2, 0, 1))
            original_src_img = torch.from_numpy(original_src_img).unsqueeze(0).float()
            original_face_imgs.append(original_src_img)

        expand_face_imgs = torch.cat(expand_face_imgs, dim=0)
        original_face_imgs = torch.cat(original_face_imgs, dim=0)
    else:
        for expand_img in expand_images_pil:
            expand_resized_img = expand_img.resize(target_size, Image.LANCZOS)
            expand_src_img = np.array(expand_resized_img)
            expand_src_img = np.transpose(expand_src_img, (2, 0, 1))
            expand_src_img = torch.from_numpy(expand_src_img).unsqueeze(0).float()
            expand_face_imgs.append(expand_src_img)
        expand_face_imgs = torch.cat(expand_face_imgs, dim=0)
        original_face_imgs = None

    return expand_face_imgs, original_face_imgs

class RandomSampler(Sampler[int]):
    r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.

    If with replacement, then user can specify :attr:`num_samples` to draw.

    Args:
        data_source (Dataset): dataset to sample from
        replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False``
        num_samples (int): number of samples to draw, default=`len(dataset)`.
        generator (Generator): Generator used in sampling.
    """

    data_source: Sized
    replacement: bool

    def __init__(self, data_source: Sized, replacement: bool = False,
                 num_samples: Optional[int] = None, generator=None) -> None:
        self.data_source = data_source
        self.replacement = replacement
        self._num_samples = num_samples
        self.generator = generator
        self._pos_start = 0

        if not isinstance(self.replacement, bool):
            raise TypeError(f"replacement should be a boolean value, but got replacement={self.replacement}")

        if not isinstance(self.num_samples, int) or self.num_samples <= 0:
            raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")

    @property
    def num_samples(self) -> int:
        # dataset size might change at runtime
        if self._num_samples is None:
            return len(self.data_source)
        return self._num_samples

    def __iter__(self) -> Iterator[int]:
        n = len(self.data_source)
        if self.generator is None:
            seed = int(torch.empty((), dtype=torch.int64).random_().item())
            generator = torch.Generator()
            generator.manual_seed(seed)
        else:
            generator = self.generator

        if self.replacement:
            for _ in range(self.num_samples // 32):
                yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist()
            yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist()
        else:
            for _ in range(self.num_samples // n):
                xx = torch.randperm(n, generator=generator).tolist()
                if self._pos_start >= n:
                    self._pos_start = 0
                print("xx top 10", xx[:10], self._pos_start)
                for idx in range(self._pos_start, n):
                    yield xx[idx]
                    self._pos_start = (self._pos_start + 1) % n
                self._pos_start = 0
            yield from torch.randperm(n, generator=generator).tolist()[:self.num_samples % n]

    def __len__(self) -> int:
        return self.num_samples
    
class SequentialSampler(Sampler[int]):
    r"""Samples elements sequentially, always in the same order.

    Args:
        data_source (Dataset): dataset to sample from
    """

    data_source: Sized

    def __init__(self, data_source: Sized) -> None:
        self.data_source = data_source
        self._pos_start = 0

    def __iter__(self) -> Iterator[int]:
        n = len(self.data_source)
        for idx in range(self._pos_start, n):
            yield idx
            self._pos_start = (self._pos_start + 1) % n
        self._pos_start = 0

    def __len__(self) -> int:
        return len(self.data_source)

class ConsisID_Dataset(Dataset):
    def __init__(
            self,
            instance_data_root: Optional[str] = None,
            id_token: Optional[str] = None,
            height=480,
            width=640,
            max_num_frames=49,
            sample_stride=3,  
            skip_frames_start_percent=0.0,
            skip_frames_end_percent=1.0,
            skip_frames_start=0,
            skip_frames_end=0,
            text_drop_ratio=-1,
            is_train_face=False,
            is_single_face=False,
            miss_tolerance=6,
            min_distance=3,
            min_frames=1,
            max_frames=5,
            is_cross_face=False,
            is_reserve_face=False,
    ):  
        self.id_token = id_token or ""
        
        # ConsisID
        self.skip_frames_start_percent = skip_frames_start_percent
        self.skip_frames_end_percent   = skip_frames_end_percent
        self.skip_frames_start         = skip_frames_start
        self.skip_frames_end           = skip_frames_end
        self.is_train_face             = is_train_face
        self.is_single_face            = is_single_face

        if is_train_face:
            self.miss_tolerance     = miss_tolerance
            self.min_distance       = min_distance
            self.min_frames         = min_frames
            self.max_frames         = max_frames
            self.is_cross_face      = is_cross_face
            self.is_reserve_face    = is_reserve_face
        
        # Loading annotations from files
        print(f"loading annotations from {instance_data_root} ...")
        with open(instance_data_root, 'r') as f:
            folder_anno = [i.strip().split(',') for i in f.readlines() if len(i.strip()) > 0]

        self.instance_prompts = []
        self.instance_video_paths = []
        self.instance_annotation_base_paths = []
        for sub_root, anno, anno_base in tqdm(folder_anno):
            print(anno)
            self.instance_annotation_base_paths.append(anno_base)
            with open(anno, 'r') as f:
                sub_list = json.load(f)
            for i in tqdm(sub_list):
                path = os.path.join(sub_root, os.path.basename(i['path']))
                cap = i.get('cap', None)
                fps = i.get('fps', 0)
                duration = i.get('duration', 0)

                if fps * duration < 49.0:
                    continue
                
                self.instance_prompts.append(cap)
                self.instance_video_paths.append(path)
        
        self.num_instance_videos = len(self.instance_video_paths)

        self.text_drop_ratio = text_drop_ratio

        # Video params
        self.sample_stride = sample_stride
        self.max_num_frames = max_num_frames
        self.height = height
        self.width = width

    def _get_frame_indices_adjusted(self, video_length, n_frames):
        indices = list(range(video_length))
        additional_frames_needed = n_frames - video_length

        repeat_indices = []
        for i in range(additional_frames_needed):
            index_to_repeat = i % video_length
            repeat_indices.append(indices[index_to_repeat])

        all_indices = indices + repeat_indices
        all_indices.sort()

        return all_indices


    def _generate_frame_indices(self, video_length, n_frames, sample_stride, skip_frames_start_percent=0.0, skip_frames_end_percent=1.0, skip_frames_start=0, skip_frames_end=0):
        if skip_frames_start_percent != 0.0 or  skip_frames_end_percent != 1.0:
            print("use skip frame percent")
            valid_start = int(video_length * skip_frames_start_percent)
            valid_end = int(video_length * skip_frames_end_percent)
        elif skip_frames_start != 0 or skip_frames_end != 0:
            print("use skip frame")
            valid_start = skip_frames_start
            valid_end = video_length - skip_frames_end
        else:
            print("no use skip frame")
            valid_start = 0
            valid_end = video_length

        adjusted_length = valid_end - valid_start

        if adjusted_length <= 0:
            print(f"video_length: {video_length}, adjusted_length: {adjusted_length}, valid_start:{valid_start}, skip_frames_end: {valid_end}")
            raise ValueError("Skipping too many frames results in no frames left to sample.")

        if video_length <= n_frames:
            return self._get_frame_indices_adjusted(video_length, n_frames)
        else:
            # clip_length = min(video_length, (n_frames - 1) * sample_stride + 1)
            # start_idx = random.randint(0, video_length - clip_length)
            # frame_indices = np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist()

            clip_length = min(adjusted_length, (n_frames - 1) * sample_stride + 1)
            start_idx = random.randint(valid_start, valid_end - clip_length)
            frame_indices = np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist()
            return frame_indices

    def _short_resize_and_crop(self, frames, target_width, target_height):
        """
        Resize frames and crop to the specified size.

        Args:
            frames (torch.Tensor): Input frames of shape [T, H, W, C].
            target_width (int): Desired width.
            target_height (int): Desired height.

        Returns:
            torch.Tensor: Cropped frames of shape [T, target_height, target_width, C].
        """
        T, H, W, C = frames.shape
        aspect_ratio = W / H

        # Determine new dimensions ensuring they are at least target size
        if aspect_ratio > target_width / target_height:
            new_width = target_width
            new_height = int(target_width / aspect_ratio)
            if new_height < target_height:
                new_height = target_height
                new_width = int(target_height * aspect_ratio)
        else:
            new_height = target_height
            new_width = int(target_height * aspect_ratio)
            if new_width < target_width:
                new_width = target_width
                new_height = int(target_width / aspect_ratio)

        resize_transform = transforms.Resize((new_height, new_width))
        crop_transform = transforms.CenterCrop((target_height, target_width))

        frames_tensor = frames.permute(0, 3, 1, 2)  # (T, H, W, C) -> (T, C, H, W)
        resized_frames = resize_transform(frames_tensor)
        cropped_frames = crop_transform(resized_frames)
        sample = cropped_frames.permute(0, 2, 3, 1)

        return sample

    def _resize_with_aspect_ratio(self, frames, target_width, target_height):
        """
            Resize frames while maintaining the aspect ratio by padding or cropping.

            Args:
                frames (torch.Tensor): Input frames of shape [T, H, W, C].
                target_width (int): Desired width.
                target_height (int): Desired height.
            
            Returns:
                torch.Tensor: Resized and padded frames of shape [T, target_height, target_width, C].
        """
        T, frame_height, frame_width, C = frames.shape
        aspect_ratio = frame_width / frame_height  # 1.77, 1280 720 -> 720 406
        target_aspect_ratio = target_width / target_height  # 1.50, 720 480 ->

        # If the frame is wider than the target, resize based on width
        if aspect_ratio > target_aspect_ratio:
            new_width = target_width
            new_height = int(target_width / aspect_ratio)
        else:
            new_height = target_height
            new_width = int(target_height * aspect_ratio)

        # Resize using batch processing
        frames = frames.permute(0, 3, 1, 2)  # [T, C, H, W]
        frames = F.interpolate(frames, size=(new_height, new_width), mode='bilinear', align_corners=False)

        # Calculate padding
        pad_top = (target_height - new_height) // 2
        pad_bottom = target_height - new_height - pad_top
        pad_left = (target_width - new_width) // 2
        pad_right = target_width - new_width - pad_left

        # Apply padding
        frames = F.pad(frames, (pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)

        frames = frames.permute(0, 2, 3, 1)  # [T, H, W, C]

        return frames
    
    
    def _save_frame(self, frame, name="1.png"):
        # [H, W, C] -> [C, H, W]
        img = frame
        img = img.permute(2, 0, 1)
        to_pil = ToPILImage()
        img = to_pil(img)
        img.save(name)


    def _save_video(self, torch_frames, name="output.mp4"):
        from moviepy.editor import ImageSequenceClip
        frames_np = torch_frames.cpu().numpy()
        if frames_np.dtype != 'uint8':
            frames_np = frames_np.astype('uint8')
        frames_list = [frame for frame in frames_np]
        desired_fps = 24
        clip = ImageSequenceClip(frames_list, fps=desired_fps)
        clip.write_videofile(name, codec="libx264")


    def get_batch(self, idx):
        decord.bridge.set_bridge("torch")
        
        video_dir = self.instance_video_paths[idx]
        text = self.instance_prompts[idx]            

        train_transforms = transforms.Compose(
            [
                transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0),
            ]
        )

        with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
            video_num_frames = len(video_reader)
            
            if self.is_train_face:
                reserve_face_imgs = None
                file_base_name = os.path.basename(video_dir.replace(".mp4", ""))
                
                anno_base_path = self.instance_annotation_base_paths[idx]
                valid_frame_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "valid_frame.json")
                control_sam2_frame_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "control_sam2_frame.json")
                corresponding_data_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "corresponding_data.json")
                masks_data_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "tracking_mask_results")
                bboxs_data_path = os.path.join(anno_base_path, "refine_bbox_jsons", f"{file_base_name}.json")
                
                with open(corresponding_data_path, 'r') as f:
                    corresponding_data = json.load(f)

                with open(control_sam2_frame_path, 'r') as f:
                    control_sam2_frame = json.load(f)

                with open(valid_frame_path, 'r') as f:
                    valid_frame = json.load(f)

                with open(bboxs_data_path, 'r') as f:
                    bbox_data = json.load(f)

                if self.is_single_face:
                    if len(corresponding_data) != 1:
                        raise ValueError(f"Using single face, but {idx} is multi person.")

                # get random valid id 
                valid_ids = []
                backup_ids = []
                for id_key, data in corresponding_data.items():
                    if 'face' in data and 'head' in data:
                        valid_ids.append(id_key)

                valid_id = random.choice(valid_ids) if valid_ids else (random.choice(backup_ids) if backup_ids else None)
                if valid_id is None:
                    raise ValueError("No valid ID found: both valid_ids and backup_ids are empty.")

                # get video
                total_index = list(range(video_num_frames))
                batch_index, _ = generate_frame_indices_for_face(self.max_num_frames, self.sample_stride, valid_frame[valid_id], 
                                                                          self.miss_tolerance, self.skip_frames_start_percent, self.skip_frames_end_percent,
                                                                          self.skip_frames_start, self.skip_frames_end)
                
                if self.is_cross_face:
                    remaining_batch_index_index = [i for i in total_index if i not in batch_index]
                    try:
                        selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index(
                                                                                                                            remaining_batch_index_index,
                                                                                                                            batch_index, valid_id,
                                                                                                                            corresponding_data, control_sam2_frame, 
                                                                                                                            valid_frame[valid_id], bbox_data, masks_data_path, 
                                                                                                                            min_distance=self.min_distance, min_frames=self.min_frames, 
                                                                                                                            max_frames=self.max_frames, dense_masks=True,
                                                                                                                            ensure_control_frame=False,
                                                                                                                        )
                    except:
                        selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index(
                                                                                                                            batch_index,
                                                                                                                            batch_index, valid_id,
                                                                                                                            corresponding_data, control_sam2_frame, 
                                                                                                                            valid_frame[valid_id], bbox_data, masks_data_path, 
                                                                                                                            min_distance=self.min_distance, min_frames=self.min_frames, 
                                                                                                                            max_frames=self.max_frames, dense_masks=True,
                                                                                                                            ensure_control_frame=False,
                                                                                                                        )
                else:
                    selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index(
                                                                                                                        batch_index,
                                                                                                                        batch_index, valid_id,
                                                                                                                        corresponding_data, control_sam2_frame, 
                                                                                                                        valid_frame[valid_id], bbox_data, masks_data_path, 
                                                                                                                        min_distance=self.min_distance, min_frames=self.min_frames, 
                                                                                                                        max_frames=self.max_frames, dense_masks=True,
                                                                                                                        ensure_control_frame=True,
                                                                                                                    )
                    if self.is_reserve_face:
                        reserve_frame_index, _, reserve_bboxs_dict, _ = select_mask_frames_from_index(
                                                                        batch_index,
                                                                        batch_index, valid_id,
                                                                        corresponding_data, control_sam2_frame, 
                                                                        valid_frame[valid_id], bbox_data, masks_data_path, 
                                                                        min_distance=3, min_frames=4, 
                                                                        max_frames=4, dense_masks=False,
                                                                        ensure_control_frame=False,
                                                                    )
                
                # get mask and aligned_face_img
                selected_frame_index = selected_frame_index[valid_id]
                valid_frame = valid_frame[valid_id]
                selected_masks_dict = selected_masks_dict[valid_id]
                selected_bboxs_dict = selected_bboxs_dict[valid_id]
                dense_masks_dict = dense_masks_dict[valid_id]

                if self.is_reserve_face:
                    reserve_frame_index = reserve_frame_index[valid_id]
                    reserve_bboxs_dict = reserve_bboxs_dict[valid_id]

                selected_masks_tensor = torch.stack([torch.tensor(mask) for mask in selected_masks_dict])
                temp_dense_masks_tensor = torch.stack([torch.tensor(mask) for mask in dense_masks_dict])
                dense_masks_tensor = self._short_resize_and_crop(temp_dense_masks_tensor.unsqueeze(-1), self.width, self.height).squeeze(-1)  # [T, H, W] -> [T, H, W, 1] -> [T, H, W]

                expand_images_pil, original_images_pil = crop_images(selected_frame_index, selected_bboxs_dict, video_reader, return_ori=True)
                expand_face_imgs, original_face_imgs = process_cropped_images(expand_images_pil, original_images_pil, target_size=(480, 480))
                if self.is_reserve_face:
                    reserve_images_pil, _ = crop_images(reserve_frame_index, reserve_bboxs_dict, video_reader, return_ori=False)
                    reserve_face_imgs, _ = process_cropped_images(reserve_images_pil, [], target_size=(480, 480))
                
                if len(expand_face_imgs) == 0 or len(original_face_imgs) == 0:
                    raise ValueError(f"No face detected in input image pool")
                       
                # post process id related data
                expand_face_imgs = pad_tensor(expand_face_imgs, self.max_frames, dim=0)
                original_face_imgs = pad_tensor(original_face_imgs, self.max_frames, dim=0)
                selected_frame_index = torch.tensor(selected_frame_index)                         # torch.Size(([15, 13])          [N1]
                selected_frame_index = pad_tensor(selected_frame_index, self.max_frames, dim=0)
            else:
                batch_index = self._generate_frame_indices(video_num_frames, self.max_num_frames, self.sample_stride,
                                                            self.skip_frames_start_percent, self.skip_frames_end_percent,
                                                            self.skip_frames_start, self.skip_frames_end)
                
            try:
                frames = video_reader.get_batch(batch_index) # torch [T, H, W, C]
                frames = self._short_resize_and_crop(frames, self.width, self.height)  # [T, H, W, C]
            except FunctionTimedOut:
                raise ValueError(f"Read {idx} timeout.")
            except Exception as e:
                raise ValueError(f"Failed to extract frames from video. Error is {e}.")

            # Apply training transforms in batch
            frames = frames.float()
            frames = train_transforms(frames)
            pixel_values = frames.permute(0, 3, 1, 2).contiguous()  # [T, C, H, W]
            del video_reader

            # Random use no text generation
            if random.random() < self.text_drop_ratio:
                text = ''
        
        if self.is_train_face:
            return pixel_values, text, 'video', video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs
        else:
            return pixel_values, text, 'video', video_dir

    def __len__(self):
        return self.num_instance_videos

    def __getitem__(self, idx):
        sample = {}
        if self.is_train_face:
            pixel_values, cap, data_type, video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs = self.get_batch(idx)
            sample["instance_prompt"] = self.id_token + cap
            sample["instance_video"] = pixel_values
            sample["video_path"] = video_dir
            if self.is_train_face:
                sample["expand_face_imgs"] = expand_face_imgs
                sample["dense_masks_tensor"] = dense_masks_tensor
                sample["selected_frame_index"] = selected_frame_index
                if reserve_face_imgs is not None:
                    sample["reserve_face_imgs"] = reserve_face_imgs
                if original_face_imgs is not None:
                    sample["original_face_imgs"] = original_face_imgs
        else:
            pixel_values, cap, data_type, video_dir = self.get_batch(idx)
            sample["instance_prompt"] = self.id_token + cap
            sample["instance_video"] = pixel_values
            sample["video_path"] = video_dir
        return sample

        # while True:
        #     sample = {}
        #     try:
        #         if self.is_train_face:
        #             pixel_values, cap, data_type, video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs = self.get_batch(idx)
        #             sample["instance_prompt"] = self.id_token + cap
        #             sample["instance_video"] = pixel_values
        #             sample["video_path"] = video_dir
        #             if self.is_train_face:
        #                 sample["expand_face_imgs"] = expand_face_imgs
        #                 sample["dense_masks_tensor"] = dense_masks_tensor
        #                 sample["selected_frame_index"] = selected_frame_index
        #                 if reserve_face_imgs is not None:
        #                     sample["reserve_face_imgs"] = reserve_face_imgs
        #                 if original_face_imgs is not None:
        #                     sample["original_face_imgs"] = original_face_imgs
        #         else:
        #             pixel_values, cap, data_type, video_dir, = self.get_batch(idx)
        #             sample["instance_prompt"] = self.id_token + cap
        #             sample["instance_video"] = pixel_values
        #             sample["video_path"] = video_dir
        #         break
        #     except Exception as e:
        #         error_message = str(e)
        #         video_path = self.instance_video_paths[idx % len(self.instance_video_paths)]
        #         print(error_message, video_path)
        #         log_error_to_file(error_message, video_path)
        #         idx = random.randint(0, self.num_instance_videos - 1)
        # return sample