File size: 48,552 Bytes
c32f190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 |
import os
import gc
import cv2
import json
import math
import decord
import random
import numpy as np
from PIL import Image
from tqdm import tqdm
from decord import VideoReader
from contextlib import contextmanager
from func_timeout import FunctionTimedOut
from typing import Optional, Sized, Iterator
import torch
from torch.utils.data import Dataset, Sampler
import torch.nn.functional as F
from torchvision.transforms import ToPILImage
from torchvision import transforms
from accelerate.logging import get_logger
logger = get_logger(__name__)
import threading
log_lock = threading.Lock()
def log_error_to_file(error_message, video_path):
with log_lock:
with open("error_log.txt", "a") as f:
f.write(f"Error: {error_message}\n")
f.write(f"Video Path: {video_path}\n")
f.write("-" * 50 + "\n")
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
vr = VideoReader(*args, **kwargs)
try:
yield vr
finally:
del vr
gc.collect()
def get_valid_segments(valid_frame, tolerance=5):
valid_positions = sorted(set(valid_frame['face']).union(set(valid_frame['head'])))
valid_segments = []
current_segment = [valid_positions[0]]
for i in range(1, len(valid_positions)):
if valid_positions[i] - valid_positions[i - 1] <= tolerance:
current_segment.append(valid_positions[i])
else:
valid_segments.append(current_segment)
current_segment = [valid_positions[i]]
if current_segment:
valid_segments.append(current_segment)
return valid_segments
def get_frame_indices_adjusted_for_face(valid_frames, n_frames):
valid_length = len(valid_frames)
if valid_length >= n_frames:
return valid_frames[:n_frames]
additional_frames_needed = n_frames - valid_length
repeat_indices = []
for i in range(additional_frames_needed):
index_to_repeat = i % valid_length
repeat_indices.append(valid_frames[index_to_repeat])
all_indices = valid_frames + repeat_indices
all_indices.sort()
return all_indices
def generate_frame_indices_for_face(n_frames, sample_stride, valid_frame, tolerance=7, skip_frames_start_percent=0.0, skip_frames_end_percent=1.0, skip_frames_start=0, skip_frames_end=0):
valid_segments = get_valid_segments(valid_frame, tolerance)
selected_segment = max(valid_segments, key=len)
valid_length = len(selected_segment)
if skip_frames_start_percent != 0.0 or skip_frames_end_percent != 1.0:
# print("use skip frame percent")
valid_start = int(valid_length * skip_frames_start_percent)
valid_end = int(valid_length * skip_frames_end_percent)
elif skip_frames_start != 0 or skip_frames_end != 0:
# print("use skip frame")
valid_start = skip_frames_start
valid_end = valid_length - skip_frames_end
else:
# print("no use skip frame")
valid_start = 0
valid_end = valid_length
if valid_length <= n_frames:
return get_frame_indices_adjusted_for_face(selected_segment, n_frames), valid_length
else:
adjusted_length = valid_end - valid_start
if adjusted_length <= 0:
print(f"video_length: {valid_length}, adjusted_length: {adjusted_length}, valid_start:{valid_start}, skip_frames_end: {valid_end}")
raise ValueError("Skipping too many frames results in no frames left to sample.")
clip_length = min(adjusted_length, (n_frames - 1) * sample_stride + 1)
start_idx_position = random.randint(valid_start, valid_end - clip_length)
start_frame = selected_segment[start_idx_position]
selected_frames = []
for i in range(n_frames):
next_frame = start_frame + i * sample_stride
if next_frame in selected_segment:
selected_frames.append(next_frame)
else:
break
if len(selected_frames) < n_frames:
return get_frame_indices_adjusted_for_face(selected_frames, n_frames), len(selected_frames)
return selected_frames, len(selected_frames)
def frame_has_required_confidence(bbox_data, frame, ID, conf_threshold=0.88):
frame_str = str(frame)
if frame_str not in bbox_data:
return False
frame_data = bbox_data[frame_str]
face_conf = any(
item['confidence'] > conf_threshold and item['new_track_id'] == ID
for item in frame_data.get('face', [])
)
head_conf = any(
item['confidence'] > conf_threshold and item['new_track_id'] == ID
for item in frame_data.get('head', [])
)
return face_conf and head_conf
def select_mask_frames_from_index(batch_frame, original_batch_frame, valid_id, corresponding_data, control_sam2_frame,
valid_frame, bbox_data, base_dir, min_distance=3, min_frames=1, max_frames=5,
mask_type='face', control_mask_type='head', dense_masks=False,
ensure_control_frame=True):
"""
Selects frames with corresponding mask images while ensuring a minimum distance constraint between frames,
and that the frames exist in both batch_frame and valid_frame.
Parameters:
base_path (str): Base directory where the JSON files and mask results are located.
min_distance (int): Minimum distance between selected frames.
min_frames (int): Minimum number of frames to select.
max_frames (int): Maximum number of frames to select.
mask_type (str): Type of mask to select frames for ('face' or 'head').
control_mask_type (str): Type of mask used for control frame selection ('face' or 'head').
Returns:
dict: A dictionary where keys are IDs and values are lists of selected mask PNG paths.
"""
# Helper function to randomly select frames with at least X frames apart
def select_frames_with_distance_constraint(frames, num_frames, min_distance, control_frame, bbox_data, ID,
ensure_control_frame=True, fallback=True):
"""
Selects frames with a minimum distance constraint. If not enough frames can be selected, a fallback plan is applied.
Parameters:
frames (list): List of frame indices to select from.
num_frames (int): Number of frames to select.
min_distance (int): Minimum distance between selected frames.
control_frame (int): The control frame that must always be included.
fallback (bool): Whether to apply a fallback strategy if not enough frames meet the distance constraint.
Returns:
list: List of selected frames.
"""
conf_thresholds = [0.95, 0.94, 0.93, 0.92, 0.91, 0.90]
if ensure_control_frame:
selected_frames = [control_frame] # Ensure control frame is always included
else:
valid_initial_frames = []
for conf_threshold in conf_thresholds:
valid_initial_frames = [
f for f in frames
if frame_has_required_confidence(bbox_data, f, ID, conf_threshold=conf_threshold)
]
if valid_initial_frames:
break
if valid_initial_frames:
selected_frames = [random.choice(valid_initial_frames)]
else:
# If no frame meets the initial confidence, fall back to a random frame (or handle as per your preference)
selected_frames = [random.choice(frames)]
available_frames = [f for f in frames if f != selected_frames[0]] # Exclude control frame for random selection
random.shuffle(available_frames) # Shuffle to introduce randomness
while available_frames and len(selected_frames) < num_frames:
last_selected_frame = selected_frames[-1]
valid_choices = []
for conf_threshold in conf_thresholds:
valid_choices = [
f for f in available_frames
if abs(f - last_selected_frame) >= min_distance and
frame_has_required_confidence(bbox_data, f, ID, conf_threshold=conf_threshold)
]
if valid_choices:
break
if valid_choices:
frame = random.choice(valid_choices)
available_frames.remove(frame)
selected_frames.append(frame)
else:
if fallback:
# Fallback strategy: uniformly distribute remaining frames if distance constraint cannot be met
remaining_needed = num_frames - len(selected_frames)
remaining_frames = available_frames[:remaining_needed]
# Distribute the remaining frames evenly if possible
if remaining_frames:
step = max(1, len(remaining_frames) // remaining_needed)
evenly_selected = remaining_frames[::step][:remaining_needed]
selected_frames.extend(evenly_selected)
break
else:
break # No valid choices remain and no fallback strategy is allowed
if len(selected_frames) < num_frames:
return None
return selected_frames
# Convert batch_frame list to a set to remove duplicates
batch_frame_set = set(batch_frame)
# Dictionary to store selected mask PNGs
selected_masks_dict = {}
selected_bboxs_dict = {}
dense_masks_dict = {}
selected_frames_dict = {}
# ID
try:
mask_valid_frames = valid_frame[mask_type] # Select frames based on the specified mask type
control_valid_frames = valid_frame[control_mask_type] # Control frames for control_mask_type
except KeyError:
if mask_type not in valid_frame.keys():
print(f"no valid {mask_type}")
if control_mask_type not in valid_frame.keys():
print(f"no valid {control_mask_type}")
# Get the control frame for the control mask type
control_frame = control_sam2_frame[valid_id][control_mask_type]
# Filter frames to only those which are in both valid_frame and batch_frame_set
valid_frames = []
# valid_frames = [frame for frame in mask_valid_frames if frame in control_valid_frames and frame in batch_frame_set]
for frame in mask_valid_frames:
if frame in control_valid_frames and frame in batch_frame_set:
# Check if bbox_data has 'head' or 'face' for the frame
if str(frame) in bbox_data:
frame_data = bbox_data[str(frame)]
if 'head' in frame_data or 'face' in frame_data:
valid_frames.append(frame)
# Ensure the control frame is included in the valid frames
if ensure_control_frame and (control_frame not in valid_frames):
valid_frames.append(control_frame)
# Select a random number of frames between min_frames and max_frames
num_frames_to_select = random.randint(min_frames, max_frames)
selected_frames = select_frames_with_distance_constraint(valid_frames, num_frames_to_select, min_distance,
control_frame, bbox_data, valid_id, ensure_control_frame)
# Store the selected frames as mask PNGs and bbox
selected_masks_dict[valid_id] = []
selected_bboxs_dict[valid_id] = []
# Initialize the dense_masks_dict entry for the current ID
dense_masks_dict[valid_id] = []
# Store the selected frames in the dictionary
selected_frames_dict[valid_id] = selected_frames
if dense_masks:
for frame in original_batch_frame:
mask_data_path = f"{base_dir}/{valid_id}/annotated_frame_{int(frame):05d}.png"
mask_array = np.array(Image.open(mask_data_path))
binary_mask = np.where(mask_array > 0, 1, 0).astype(np.uint8)
dense_masks_dict[valid_id].append(binary_mask)
for frame in selected_frames:
mask_data_path = f"{base_dir}/{valid_id}/annotated_frame_{frame:05d}.png"
mask_array = np.array(Image.open(mask_data_path))
binary_mask = np.where(mask_array > 0, 1, 0).astype(np.uint8)
selected_masks_dict[valid_id].append(binary_mask)
try:
for item in bbox_data[f"{frame}"]["head"]:
if item['new_track_id'] == int(valid_id):
temp_bbox = item['box']
break
except (KeyError, StopIteration):
try:
for item in bbox_data[f"{frame}"]["face"]:
if item['new_track_id'] == int(valid_id):
temp_bbox = item['box']
break
except (KeyError, StopIteration):
temp_bbox = None
selected_bboxs_dict[valid_id].append(temp_bbox)
return selected_frames_dict, selected_masks_dict, selected_bboxs_dict, dense_masks_dict
def pad_tensor(tensor, target_size, dim=0):
padding_size = target_size - tensor.size(dim)
if padding_size > 0:
pad_shape = list(tensor.shape)
pad_shape[dim] = padding_size
padding_tensor = torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)
return torch.cat([tensor, padding_tensor], dim=dim)
else:
return tensor[:target_size]
def crop_images(selected_frame_index, selected_bboxs_dict, video_reader, return_ori=False):
"""
Crop images based on given bounding boxes and frame indices from a video.
Args:
selected_frame_index (list): List of frame indices to be cropped.
selected_bboxs_dict (list of dict): List of dictionaries, each containing 'x1', 'y1', 'x2', 'y2' bounding box coordinates.
video_reader (VideoReader or list of numpy arrays): Video frames accessible by index, where each frame is a numpy array (H, W, C).
Returns:
list: A list of cropped images in PIL Image format.
"""
expanded_cropped_images = []
original_cropped_images = []
for frame_idx, bbox in zip(selected_frame_index, selected_bboxs_dict):
# Get the specific frame from the video reader using the frame index
frame = video_reader[frame_idx] # torch.tensor # (H, W, C)
# Extract bounding box coordinates and convert them to integers
x1, y1, x2, y2 = int(bbox['x1']), int(bbox['y1']), int(bbox['x2']), int(bbox['y2'])
# Crop to minimize the bounding box to a square
width = x2 - x1 # Calculate the width of the bounding box
height = y2 - y1 # Calculate the height of the bounding box
side_length = max(width, height) # Determine the side length of the square (max of width or height)
# Calculate the center of the bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Calculate new coordinates for the square region centered around the original bounding box
new_x1 = max(0, center_x - side_length // 2) # Ensure x1 is within image bounds
new_y1 = max(0, center_y - side_length // 2) # Ensure y1 is within image bounds
new_x2 = min(frame.shape[1], new_x1 + side_length) # Ensure x2 does not exceed image width
new_y2 = min(frame.shape[0], new_y1 + side_length) # Ensure y2 does not exceed image height
# Adjust coordinates if the cropped area is smaller than the desired side length
# Ensure final width and height are equal, keeping it a square
actual_width = new_x2 - new_x1
actual_height = new_y2 - new_y1
if actual_width < side_length:
# Adjust x1 or x2 to ensure the correct side length, while staying in bounds
if new_x1 == 0:
new_x2 = min(frame.shape[1], new_x1 + side_length)
else:
new_x1 = max(0, new_x2 - side_length)
if actual_height < side_length:
# Adjust y1 or y2 to ensure the correct side length, while staying in bounds
if new_y1 == 0:
new_y2 = min(frame.shape[0], new_y1 + side_length)
else:
new_y1 = max(0, new_y2 - side_length)
# Expand the square by 20%
expansion_ratio = 0.2 # Define the expansion ratio
expansion_amount = int(side_length * expansion_ratio) # Calculate the number of pixels to expand by
# Calculate expanded coordinates, ensuring they stay within image bounds
expanded_x1 = max(0, new_x1 - expansion_amount) # Expand left, ensuring x1 is within bounds
expanded_y1 = max(0, new_y1 - expansion_amount) # Expand up, ensuring y1 is within bounds
expanded_x2 = min(frame.shape[1], new_x2 + expansion_amount) # Expand right, ensuring x2 does not exceed bounds
expanded_y2 = min(frame.shape[0], new_y2 + expansion_amount) # Expand down, ensuring y2 does not exceed bounds
# Ensure the expanded area is still a square
expanded_width = expanded_x2 - expanded_x1
expanded_height = expanded_y2 - expanded_y1
final_side_length = min(expanded_width, expanded_height)
# Adjust to ensure square shape if necessary
if expanded_width != expanded_height:
if expanded_width > expanded_height:
expanded_x2 = expanded_x1 + final_side_length
else:
expanded_y2 = expanded_y1 + final_side_length
expanded_cropped_rgb_tensor = frame[expanded_y1:expanded_y2, expanded_x1:expanded_x2, :]
expanded_cropped_rgb = Image.fromarray(np.array(expanded_cropped_rgb_tensor)).convert('RGB')
expanded_cropped_images.append(expanded_cropped_rgb)
if return_ori:
original_cropped_rgb_tensor = frame[new_y1:new_y2, new_x1:new_x2, :]
original_cropped_rgb = Image.fromarray(np.array(original_cropped_rgb_tensor)).convert('RGB')
original_cropped_images.append(original_cropped_rgb)
return expanded_cropped_images, original_cropped_images
return expanded_cropped_images, None
def process_cropped_images(expand_images_pil, original_images_pil, target_size=(480, 480)):
"""
Process a list of cropped images in PIL format.
Parameters:
expand_images_pil (list of PIL.Image): List of cropped images in PIL format.
target_size (tuple of int): The target size for resizing images, default is (480, 480).
Returns:
torch.Tensor: A tensor containing the processed images.
"""
expand_face_imgs = []
original_face_imgs = []
if len(original_images_pil) != 0:
for expand_img, original_img in zip(expand_images_pil, original_images_pil):
expand_resized_img = expand_img.resize(target_size, Image.LANCZOS)
expand_src_img = np.array(expand_resized_img)
expand_src_img = np.transpose(expand_src_img, (2, 0, 1))
expand_src_img = torch.from_numpy(expand_src_img).unsqueeze(0).float()
expand_face_imgs.append(expand_src_img)
original_resized_img = original_img.resize(target_size, Image.LANCZOS)
original_src_img = np.array(original_resized_img)
original_src_img = np.transpose(original_src_img, (2, 0, 1))
original_src_img = torch.from_numpy(original_src_img).unsqueeze(0).float()
original_face_imgs.append(original_src_img)
expand_face_imgs = torch.cat(expand_face_imgs, dim=0)
original_face_imgs = torch.cat(original_face_imgs, dim=0)
else:
for expand_img in expand_images_pil:
expand_resized_img = expand_img.resize(target_size, Image.LANCZOS)
expand_src_img = np.array(expand_resized_img)
expand_src_img = np.transpose(expand_src_img, (2, 0, 1))
expand_src_img = torch.from_numpy(expand_src_img).unsqueeze(0).float()
expand_face_imgs.append(expand_src_img)
expand_face_imgs = torch.cat(expand_face_imgs, dim=0)
original_face_imgs = None
return expand_face_imgs, original_face_imgs
class RandomSampler(Sampler[int]):
r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.
If with replacement, then user can specify :attr:`num_samples` to draw.
Args:
data_source (Dataset): dataset to sample from
replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False``
num_samples (int): number of samples to draw, default=`len(dataset)`.
generator (Generator): Generator used in sampling.
"""
data_source: Sized
replacement: bool
def __init__(self, data_source: Sized, replacement: bool = False,
num_samples: Optional[int] = None, generator=None) -> None:
self.data_source = data_source
self.replacement = replacement
self._num_samples = num_samples
self.generator = generator
self._pos_start = 0
if not isinstance(self.replacement, bool):
raise TypeError(f"replacement should be a boolean value, but got replacement={self.replacement}")
if not isinstance(self.num_samples, int) or self.num_samples <= 0:
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")
@property
def num_samples(self) -> int:
# dataset size might change at runtime
if self._num_samples is None:
return len(self.data_source)
return self._num_samples
def __iter__(self) -> Iterator[int]:
n = len(self.data_source)
if self.generator is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
generator = torch.Generator()
generator.manual_seed(seed)
else:
generator = self.generator
if self.replacement:
for _ in range(self.num_samples // 32):
yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist()
yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist()
else:
for _ in range(self.num_samples // n):
xx = torch.randperm(n, generator=generator).tolist()
if self._pos_start >= n:
self._pos_start = 0
print("xx top 10", xx[:10], self._pos_start)
for idx in range(self._pos_start, n):
yield xx[idx]
self._pos_start = (self._pos_start + 1) % n
self._pos_start = 0
yield from torch.randperm(n, generator=generator).tolist()[:self.num_samples % n]
def __len__(self) -> int:
return self.num_samples
class SequentialSampler(Sampler[int]):
r"""Samples elements sequentially, always in the same order.
Args:
data_source (Dataset): dataset to sample from
"""
data_source: Sized
def __init__(self, data_source: Sized) -> None:
self.data_source = data_source
self._pos_start = 0
def __iter__(self) -> Iterator[int]:
n = len(self.data_source)
for idx in range(self._pos_start, n):
yield idx
self._pos_start = (self._pos_start + 1) % n
self._pos_start = 0
def __len__(self) -> int:
return len(self.data_source)
class ConsisID_Dataset(Dataset):
def __init__(
self,
instance_data_root: Optional[str] = None,
id_token: Optional[str] = None,
height=480,
width=640,
max_num_frames=49,
sample_stride=3,
skip_frames_start_percent=0.0,
skip_frames_end_percent=1.0,
skip_frames_start=0,
skip_frames_end=0,
text_drop_ratio=-1,
is_train_face=False,
is_single_face=False,
miss_tolerance=6,
min_distance=3,
min_frames=1,
max_frames=5,
is_cross_face=False,
is_reserve_face=False,
):
self.id_token = id_token or ""
# ConsisID
self.skip_frames_start_percent = skip_frames_start_percent
self.skip_frames_end_percent = skip_frames_end_percent
self.skip_frames_start = skip_frames_start
self.skip_frames_end = skip_frames_end
self.is_train_face = is_train_face
self.is_single_face = is_single_face
if is_train_face:
self.miss_tolerance = miss_tolerance
self.min_distance = min_distance
self.min_frames = min_frames
self.max_frames = max_frames
self.is_cross_face = is_cross_face
self.is_reserve_face = is_reserve_face
# Loading annotations from files
print(f"loading annotations from {instance_data_root} ...")
with open(instance_data_root, 'r') as f:
folder_anno = [i.strip().split(',') for i in f.readlines() if len(i.strip()) > 0]
self.instance_prompts = []
self.instance_video_paths = []
self.instance_annotation_base_paths = []
for sub_root, anno, anno_base in tqdm(folder_anno):
print(anno)
self.instance_annotation_base_paths.append(anno_base)
with open(anno, 'r') as f:
sub_list = json.load(f)
for i in tqdm(sub_list):
path = os.path.join(sub_root, os.path.basename(i['path']))
cap = i.get('cap', None)
fps = i.get('fps', 0)
duration = i.get('duration', 0)
if fps * duration < 49.0:
continue
self.instance_prompts.append(cap)
self.instance_video_paths.append(path)
self.num_instance_videos = len(self.instance_video_paths)
self.text_drop_ratio = text_drop_ratio
# Video params
self.sample_stride = sample_stride
self.max_num_frames = max_num_frames
self.height = height
self.width = width
def _get_frame_indices_adjusted(self, video_length, n_frames):
indices = list(range(video_length))
additional_frames_needed = n_frames - video_length
repeat_indices = []
for i in range(additional_frames_needed):
index_to_repeat = i % video_length
repeat_indices.append(indices[index_to_repeat])
all_indices = indices + repeat_indices
all_indices.sort()
return all_indices
def _generate_frame_indices(self, video_length, n_frames, sample_stride, skip_frames_start_percent=0.0, skip_frames_end_percent=1.0, skip_frames_start=0, skip_frames_end=0):
if skip_frames_start_percent != 0.0 or skip_frames_end_percent != 1.0:
print("use skip frame percent")
valid_start = int(video_length * skip_frames_start_percent)
valid_end = int(video_length * skip_frames_end_percent)
elif skip_frames_start != 0 or skip_frames_end != 0:
print("use skip frame")
valid_start = skip_frames_start
valid_end = video_length - skip_frames_end
else:
print("no use skip frame")
valid_start = 0
valid_end = video_length
adjusted_length = valid_end - valid_start
if adjusted_length <= 0:
print(f"video_length: {video_length}, adjusted_length: {adjusted_length}, valid_start:{valid_start}, skip_frames_end: {valid_end}")
raise ValueError("Skipping too many frames results in no frames left to sample.")
if video_length <= n_frames:
return self._get_frame_indices_adjusted(video_length, n_frames)
else:
# clip_length = min(video_length, (n_frames - 1) * sample_stride + 1)
# start_idx = random.randint(0, video_length - clip_length)
# frame_indices = np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist()
clip_length = min(adjusted_length, (n_frames - 1) * sample_stride + 1)
start_idx = random.randint(valid_start, valid_end - clip_length)
frame_indices = np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist()
return frame_indices
def _short_resize_and_crop(self, frames, target_width, target_height):
"""
Resize frames and crop to the specified size.
Args:
frames (torch.Tensor): Input frames of shape [T, H, W, C].
target_width (int): Desired width.
target_height (int): Desired height.
Returns:
torch.Tensor: Cropped frames of shape [T, target_height, target_width, C].
"""
T, H, W, C = frames.shape
aspect_ratio = W / H
# Determine new dimensions ensuring they are at least target size
if aspect_ratio > target_width / target_height:
new_width = target_width
new_height = int(target_width / aspect_ratio)
if new_height < target_height:
new_height = target_height
new_width = int(target_height * aspect_ratio)
else:
new_height = target_height
new_width = int(target_height * aspect_ratio)
if new_width < target_width:
new_width = target_width
new_height = int(target_width / aspect_ratio)
resize_transform = transforms.Resize((new_height, new_width))
crop_transform = transforms.CenterCrop((target_height, target_width))
frames_tensor = frames.permute(0, 3, 1, 2) # (T, H, W, C) -> (T, C, H, W)
resized_frames = resize_transform(frames_tensor)
cropped_frames = crop_transform(resized_frames)
sample = cropped_frames.permute(0, 2, 3, 1)
return sample
def _resize_with_aspect_ratio(self, frames, target_width, target_height):
"""
Resize frames while maintaining the aspect ratio by padding or cropping.
Args:
frames (torch.Tensor): Input frames of shape [T, H, W, C].
target_width (int): Desired width.
target_height (int): Desired height.
Returns:
torch.Tensor: Resized and padded frames of shape [T, target_height, target_width, C].
"""
T, frame_height, frame_width, C = frames.shape
aspect_ratio = frame_width / frame_height # 1.77, 1280 720 -> 720 406
target_aspect_ratio = target_width / target_height # 1.50, 720 480 ->
# If the frame is wider than the target, resize based on width
if aspect_ratio > target_aspect_ratio:
new_width = target_width
new_height = int(target_width / aspect_ratio)
else:
new_height = target_height
new_width = int(target_height * aspect_ratio)
# Resize using batch processing
frames = frames.permute(0, 3, 1, 2) # [T, C, H, W]
frames = F.interpolate(frames, size=(new_height, new_width), mode='bilinear', align_corners=False)
# Calculate padding
pad_top = (target_height - new_height) // 2
pad_bottom = target_height - new_height - pad_top
pad_left = (target_width - new_width) // 2
pad_right = target_width - new_width - pad_left
# Apply padding
frames = F.pad(frames, (pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0)
frames = frames.permute(0, 2, 3, 1) # [T, H, W, C]
return frames
def _save_frame(self, frame, name="1.png"):
# [H, W, C] -> [C, H, W]
img = frame
img = img.permute(2, 0, 1)
to_pil = ToPILImage()
img = to_pil(img)
img.save(name)
def _save_video(self, torch_frames, name="output.mp4"):
from moviepy.editor import ImageSequenceClip
frames_np = torch_frames.cpu().numpy()
if frames_np.dtype != 'uint8':
frames_np = frames_np.astype('uint8')
frames_list = [frame for frame in frames_np]
desired_fps = 24
clip = ImageSequenceClip(frames_list, fps=desired_fps)
clip.write_videofile(name, codec="libx264")
def get_batch(self, idx):
decord.bridge.set_bridge("torch")
video_dir = self.instance_video_paths[idx]
text = self.instance_prompts[idx]
train_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0),
]
)
with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
video_num_frames = len(video_reader)
if self.is_train_face:
reserve_face_imgs = None
file_base_name = os.path.basename(video_dir.replace(".mp4", ""))
anno_base_path = self.instance_annotation_base_paths[idx]
valid_frame_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "valid_frame.json")
control_sam2_frame_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "control_sam2_frame.json")
corresponding_data_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "corresponding_data.json")
masks_data_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "tracking_mask_results")
bboxs_data_path = os.path.join(anno_base_path, "refine_bbox_jsons", f"{file_base_name}.json")
with open(corresponding_data_path, 'r') as f:
corresponding_data = json.load(f)
with open(control_sam2_frame_path, 'r') as f:
control_sam2_frame = json.load(f)
with open(valid_frame_path, 'r') as f:
valid_frame = json.load(f)
with open(bboxs_data_path, 'r') as f:
bbox_data = json.load(f)
if self.is_single_face:
if len(corresponding_data) != 1:
raise ValueError(f"Using single face, but {idx} is multi person.")
# get random valid id
valid_ids = []
backup_ids = []
for id_key, data in corresponding_data.items():
if 'face' in data and 'head' in data:
valid_ids.append(id_key)
valid_id = random.choice(valid_ids) if valid_ids else (random.choice(backup_ids) if backup_ids else None)
if valid_id is None:
raise ValueError("No valid ID found: both valid_ids and backup_ids are empty.")
# get video
total_index = list(range(video_num_frames))
batch_index, _ = generate_frame_indices_for_face(self.max_num_frames, self.sample_stride, valid_frame[valid_id],
self.miss_tolerance, self.skip_frames_start_percent, self.skip_frames_end_percent,
self.skip_frames_start, self.skip_frames_end)
if self.is_cross_face:
remaining_batch_index_index = [i for i in total_index if i not in batch_index]
try:
selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index(
remaining_batch_index_index,
batch_index, valid_id,
corresponding_data, control_sam2_frame,
valid_frame[valid_id], bbox_data, masks_data_path,
min_distance=self.min_distance, min_frames=self.min_frames,
max_frames=self.max_frames, dense_masks=True,
ensure_control_frame=False,
)
except:
selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index(
batch_index,
batch_index, valid_id,
corresponding_data, control_sam2_frame,
valid_frame[valid_id], bbox_data, masks_data_path,
min_distance=self.min_distance, min_frames=self.min_frames,
max_frames=self.max_frames, dense_masks=True,
ensure_control_frame=False,
)
else:
selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index(
batch_index,
batch_index, valid_id,
corresponding_data, control_sam2_frame,
valid_frame[valid_id], bbox_data, masks_data_path,
min_distance=self.min_distance, min_frames=self.min_frames,
max_frames=self.max_frames, dense_masks=True,
ensure_control_frame=True,
)
if self.is_reserve_face:
reserve_frame_index, _, reserve_bboxs_dict, _ = select_mask_frames_from_index(
batch_index,
batch_index, valid_id,
corresponding_data, control_sam2_frame,
valid_frame[valid_id], bbox_data, masks_data_path,
min_distance=3, min_frames=4,
max_frames=4, dense_masks=False,
ensure_control_frame=False,
)
# get mask and aligned_face_img
selected_frame_index = selected_frame_index[valid_id]
valid_frame = valid_frame[valid_id]
selected_masks_dict = selected_masks_dict[valid_id]
selected_bboxs_dict = selected_bboxs_dict[valid_id]
dense_masks_dict = dense_masks_dict[valid_id]
if self.is_reserve_face:
reserve_frame_index = reserve_frame_index[valid_id]
reserve_bboxs_dict = reserve_bboxs_dict[valid_id]
selected_masks_tensor = torch.stack([torch.tensor(mask) for mask in selected_masks_dict])
temp_dense_masks_tensor = torch.stack([torch.tensor(mask) for mask in dense_masks_dict])
dense_masks_tensor = self._short_resize_and_crop(temp_dense_masks_tensor.unsqueeze(-1), self.width, self.height).squeeze(-1) # [T, H, W] -> [T, H, W, 1] -> [T, H, W]
expand_images_pil, original_images_pil = crop_images(selected_frame_index, selected_bboxs_dict, video_reader, return_ori=True)
expand_face_imgs, original_face_imgs = process_cropped_images(expand_images_pil, original_images_pil, target_size=(480, 480))
if self.is_reserve_face:
reserve_images_pil, _ = crop_images(reserve_frame_index, reserve_bboxs_dict, video_reader, return_ori=False)
reserve_face_imgs, _ = process_cropped_images(reserve_images_pil, [], target_size=(480, 480))
if len(expand_face_imgs) == 0 or len(original_face_imgs) == 0:
raise ValueError(f"No face detected in input image pool")
# post process id related data
expand_face_imgs = pad_tensor(expand_face_imgs, self.max_frames, dim=0)
original_face_imgs = pad_tensor(original_face_imgs, self.max_frames, dim=0)
selected_frame_index = torch.tensor(selected_frame_index) # torch.Size(([15, 13]) [N1]
selected_frame_index = pad_tensor(selected_frame_index, self.max_frames, dim=0)
else:
batch_index = self._generate_frame_indices(video_num_frames, self.max_num_frames, self.sample_stride,
self.skip_frames_start_percent, self.skip_frames_end_percent,
self.skip_frames_start, self.skip_frames_end)
try:
frames = video_reader.get_batch(batch_index) # torch [T, H, W, C]
frames = self._short_resize_and_crop(frames, self.width, self.height) # [T, H, W, C]
except FunctionTimedOut:
raise ValueError(f"Read {idx} timeout.")
except Exception as e:
raise ValueError(f"Failed to extract frames from video. Error is {e}.")
# Apply training transforms in batch
frames = frames.float()
frames = train_transforms(frames)
pixel_values = frames.permute(0, 3, 1, 2).contiguous() # [T, C, H, W]
del video_reader
# Random use no text generation
if random.random() < self.text_drop_ratio:
text = ''
if self.is_train_face:
return pixel_values, text, 'video', video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs
else:
return pixel_values, text, 'video', video_dir
def __len__(self):
return self.num_instance_videos
def __getitem__(self, idx):
sample = {}
if self.is_train_face:
pixel_values, cap, data_type, video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs = self.get_batch(idx)
sample["instance_prompt"] = self.id_token + cap
sample["instance_video"] = pixel_values
sample["video_path"] = video_dir
if self.is_train_face:
sample["expand_face_imgs"] = expand_face_imgs
sample["dense_masks_tensor"] = dense_masks_tensor
sample["selected_frame_index"] = selected_frame_index
if reserve_face_imgs is not None:
sample["reserve_face_imgs"] = reserve_face_imgs
if original_face_imgs is not None:
sample["original_face_imgs"] = original_face_imgs
else:
pixel_values, cap, data_type, video_dir = self.get_batch(idx)
sample["instance_prompt"] = self.id_token + cap
sample["instance_video"] = pixel_values
sample["video_path"] = video_dir
return sample
# while True:
# sample = {}
# try:
# if self.is_train_face:
# pixel_values, cap, data_type, video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs = self.get_batch(idx)
# sample["instance_prompt"] = self.id_token + cap
# sample["instance_video"] = pixel_values
# sample["video_path"] = video_dir
# if self.is_train_face:
# sample["expand_face_imgs"] = expand_face_imgs
# sample["dense_masks_tensor"] = dense_masks_tensor
# sample["selected_frame_index"] = selected_frame_index
# if reserve_face_imgs is not None:
# sample["reserve_face_imgs"] = reserve_face_imgs
# if original_face_imgs is not None:
# sample["original_face_imgs"] = original_face_imgs
# else:
# pixel_values, cap, data_type, video_dir, = self.get_batch(idx)
# sample["instance_prompt"] = self.id_token + cap
# sample["instance_video"] = pixel_values
# sample["video_path"] = video_dir
# break
# except Exception as e:
# error_message = str(e)
# video_path = self.instance_video_paths[idx % len(self.instance_video_paths)]
# print(error_message, video_path)
# log_error_to_file(error_message, video_path)
# idx = random.randint(0, self.num_instance_videos - 1)
# return sample |