File size: 11,791 Bytes
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import hashlib
import os
import urllib
import warnings
from functools import partial
from typing import Dict, Union

from tqdm import tqdm

try:
    from huggingface_hub import hf_hub_download
    _has_hf_hub = True
except ImportError:
    hf_hub_download = None
    _has_hf_hub = False


def _pcfg(url='', hf_hub='', filename='', mean=None, std=None):
    return dict(
        url=url,
        hf_hub=hf_hub,
        mean=mean,
        std=std,
    )

_VITB32 = dict(
    openai=_pcfg(
        "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
    laion400m_e31=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
    laion400m_e32=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
    laion2b_e16=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
    laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/')
)

_VITB32_quickgelu = dict(
    openai=_pcfg(
        "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
    laion400m_e31=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
    laion400m_e32=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
)

_VITB16 = dict(
    openai=_pcfg(
        "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
    laion400m_e31=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
    laion400m_e32=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
    laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
)

_EVAB16 = dict(
    eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
    eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'),
    eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
    eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'),
)

_VITB16_PLUS_240 = dict(
    laion400m_e31=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
    laion400m_e32=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
)

_VITL14 = dict(
    openai=_pcfg(
        "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
    laion400m_e31=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
    laion400m_e32=_pcfg(
        "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
    laion2b_s32b_b82k=_pcfg(
        hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
)

_EVAL14 = dict(
    eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
    eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'),
    eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
    eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'),
)

_VITL14_336 = dict(
    openai=_pcfg(
        "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
)

_EVAL14_336 = dict(
    eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
    eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'),
    eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
    eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'),
)

_VITH14 = dict(
    laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
)

_VITg14 = dict(
    laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
    laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
)

_EVAg14 = dict(
    eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
    eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
    eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
    eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'),
)

_EVAg14_PLUS = dict(
    eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'),
    eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'),
    eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
    eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'),
)

_VITbigG14 = dict(
    laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
)

_EVAbigE14 = dict(
    eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
    eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
    eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
    eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'),
)

_EVAbigE14_PLUS = dict(
    eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
    eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'),
    eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
    eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'),
)


_PRETRAINED = {
    # "ViT-B-32": _VITB32,
    "OpenaiCLIP-B-32": _VITB32,
    "OpenCLIP-B-32": _VITB32,

    # "ViT-B-32-quickgelu": _VITB32_quickgelu,
    "OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
    "OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,

    # "ViT-B-16": _VITB16,
    "OpenaiCLIP-B-16": _VITB16,
    "OpenCLIP-B-16": _VITB16,

    "EVA02-B-16": _EVAB16,
    "EVA02-CLIP-B-16": _EVAB16,

    # "ViT-B-16-plus-240": _VITB16_PLUS_240,
    "OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,

    # "ViT-L-14": _VITL14,
    "OpenaiCLIP-L-14": _VITL14,
    "OpenCLIP-L-14": _VITL14,

    "EVA02-L-14": _EVAL14,
    "EVA02-CLIP-L-14": _EVAL14,

    # "ViT-L-14-336": _VITL14_336,
    "OpenaiCLIP-L-14-336": _VITL14_336,

    "EVA02-CLIP-L-14-336": _EVAL14_336,

    # "ViT-H-14": _VITH14,
    # "ViT-g-14": _VITg14,
    "OpenCLIP-H-14": _VITH14,
    "OpenCLIP-g-14": _VITg14,

    "EVA01-CLIP-g-14": _EVAg14,
    "EVA01-CLIP-g-14-plus": _EVAg14_PLUS,

    # "ViT-bigG-14": _VITbigG14,
    "OpenCLIP-bigG-14": _VITbigG14,

    "EVA02-CLIP-bigE-14": _EVAbigE14,
    "EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
}


def _clean_tag(tag: str):
    # normalize pretrained tags
    return tag.lower().replace('-', '_')


def list_pretrained(as_str: bool = False):
    """ returns list of pretrained models
    Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
    """
    return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]


def list_pretrained_models_by_tag(tag: str):
    """ return all models having the specified pretrain tag """
    models = []
    tag = _clean_tag(tag)
    for k in _PRETRAINED.keys():
        if tag in _PRETRAINED[k]:
            models.append(k)
    return models


def list_pretrained_tags_by_model(model: str):
    """ return all pretrain tags for the specified model architecture """
    tags = []
    if model in _PRETRAINED:
        tags.extend(_PRETRAINED[model].keys())
    return tags


def is_pretrained_cfg(model: str, tag: str):
    if model not in _PRETRAINED:
        return False
    return _clean_tag(tag) in _PRETRAINED[model]


def get_pretrained_cfg(model: str, tag: str):
    if model not in _PRETRAINED:
        return {}
    model_pretrained = _PRETRAINED[model]
    return model_pretrained.get(_clean_tag(tag), {})


def get_pretrained_url(model: str, tag: str):
    cfg = get_pretrained_cfg(model, _clean_tag(tag))
    return cfg.get('url', '')


def download_pretrained_from_url(
        url: str,
        cache_dir: Union[str, None] = None,
):
    if not cache_dir:
        cache_dir = os.path.expanduser("~/.cache/clip")
    os.makedirs(cache_dir, exist_ok=True)
    filename = os.path.basename(url)

    if 'openaipublic' in url:
        expected_sha256 = url.split("/")[-2]
    elif 'mlfoundations' in url:
        expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
    else:
        expected_sha256 = ''

    download_target = os.path.join(cache_dir, filename)

    if os.path.exists(download_target) and not os.path.isfile(download_target):
        raise RuntimeError(f"{download_target} exists and is not a regular file")

    if os.path.isfile(download_target):
        if expected_sha256:
            if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
                return download_target
            else:
                warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
        else:
            return download_target

    with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
        with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
            while True:
                buffer = source.read(8192)
                if not buffer:
                    break

                output.write(buffer)
                loop.update(len(buffer))

    if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
        raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")

    return download_target


def has_hf_hub(necessary=False):
    if not _has_hf_hub and necessary:
        # if no HF Hub module installed, and it is necessary to continue, raise error
        raise RuntimeError(
            'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
    return _has_hf_hub


def download_pretrained_from_hf(
        model_id: str,
        filename: str = 'open_clip_pytorch_model.bin',
        revision=None,
        cache_dir: Union[str, None] = None,
):
    has_hf_hub(True)
    cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
    return cached_file


def download_pretrained(
        cfg: Dict,
        force_hf_hub: bool = False,
        cache_dir: Union[str, None] = None,
):
    target = ''
    if not cfg:
        return target

    download_url = cfg.get('url', '')
    download_hf_hub = cfg.get('hf_hub', '')
    if download_hf_hub and force_hf_hub:
        # use HF hub even if url exists
        download_url = ''

    if download_url:
        target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
    elif download_hf_hub:
        has_hf_hub(True)
        # we assume the hf_hub entries in pretrained config combine model_id + filename in
        # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
        # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
        model_id, filename = os.path.split(download_hf_hub)
        if filename:
            target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
        else:
            target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)

    return target